

Getting Started: Looking

Around the Linux/UNIX System

Now that you have an idea of what Linux and UNIX are, it’s time to

take the first steps to becoming a user. In this chapter the very first

thing you’ll learn is how to connect to a Linux/UNIX system so that

you can login. You’ll then learn how to log in and out, and change

your password to secure your account. After this you’ll learn the

commands used to perform basic user functions like moving around

the file system, by changing directories, commands for viewing the

files and folders in a directory, and finding out other information about

the system and what is happening on the system. You will also learn

about the general layout of the Linux and UNIX file system and some

of the standard Linux/UNIX directories, those that are similar in

function to Users, Program Files, and the Windows or WINNT folders

on a Microsoft Windows system.

At the end of this chapter you will be able to:

1. Use ssh to connect to a Linux server, login, change your password

and logout.

2. Describe the general layout the Linux/UNIX file system and

identify key directories.

3. Explain the concept of a home directory and identify your own

home directory.

4. Move around the file system using both relative and absolute

paths.

5. Identify your current location in the file system at any time.

6. List the content of a directory.

7. Display basic information about your user account.

8. Identify who is logged on the system and what they are doing.

Connecting and Logging In
The very first step to using Linux or UNIX is to log in to your account. Logging into a Linux or

UNIX computer is much like logging into a Windows computer, especially if you’ve installed

and booted Linux on your own computer. If you have the skills to install your own Linux server

then I’ll assume you’re also able to login. But there’s also a good possibility that you’re going to

use an account a Linux or UNIX server someone else is administering, like at work or in a class.

If this is the case, and you’re using an account on remote server you’ll need to open a network

connection with the server before logging in.

In this section you’ll learn a few of the more common ways to make the network connection,

plus a few details about the login process.

Background - telnet and ssh
To login to a Linux/UNIX server you’ll first to initiate a network connection with the server.

This is done using a protocol called ssh. Here’s some quick background on ssh and its

predecessor telnet.

In the old days connecting to a remote server to type commands was done using a protocol called

telnet. Telnet emulated the old computer terminals which displayed each character you typed so

you could see what you were typing, then passed each character you typed to the server so it

could process your commands, and finally displayed any output from the server back on the

terminal. The old computer terminals were plugged directly into the computer so there was no

need to open a network connection. This was fairly secure as the only way an attacker could see

the data being transmitted is if they had physical access to the terminal, or the server, or the cable

connecting them.

As the Internet and TCP/IP became prevalent telnet was developed to perform the same

communication between the terminal and the server, except now the connection was across the

Internet instead of being sent across a serial cable that was plugged directly into the server.

Figure 2.1 Old terminals were directly connected to the server, which protected data

from attackers.

Telnet functioned fine except it had one issue. That is, telnet did a great job passing commands

to the remote server, and receiving and displaying the output but the problem with telnet is that it

provided no security. Security wasn’t an issue with the old computer terminals as they were

plugged directly into the server, so there was no way for anyone to easily intercept the data

transmissions. But telnet connections, like any Internet connection, were passed through network

routers, each of which could view the data as it passed through the router. This meant that when

you entered things like your user name and password, it was easily visible, which was a giant

security vulnerability.

To mitigate the security issue, a new protocol called the secure socket shell or ssh was

developed. Ssh provides the same general function as telnet, passing commands and data

between a client terminal and a server, but ssh encrypts all the data to protect it as it passes

through the network routers.

For those of you who want to know and understand the technical network details, telnet uses port

23 by default, while ssh uses port 22.

Figure 2.2 Telnet sends data across the Internet in clear text, exposing it to attackers.

Figure 2.2 ssh encrypts data before transmission, protecting it from attackers.

Opening an ssh connection to a Linux/UNIX server
Before opening an ssh connection with a server you’ll need to know three things:

1. The server’s DNS name or IP address

2. Your user name for your account on the server

3. Your password for your account on the server

Once you’re armed with this information you have a few different ways to open an ssh

connection to a Linux or UNIX server. Here are the two main ways to open the ssh connection,

running ssh in a Command window or using an application.

Running ssh in a Command Window
If you’re running any of the major Operating Systems such as Microsoft Windows, Linux, or the

MacOS you can open a Command or Terminal window and use the ssh command that comes

with your system. Here’s the process for opening a Command window in Microsoft Windows.

(If you need help opening a Terminal Window in Linux or MacOS you can instructions at the

book’s web site, or do an Internet search.)

1. Go to the Windows search or type <WIN-S> < -S> and type cmd, then select the

Command Prompt application.

2. This will open a Command Prompt Window. Click inside the window and type:

ssh user@serverDNS

For example, if you user name is milesDyson and the DNS name of the Linux server is

skynet.mil the command would be:

ssh milesDyson@skynet.mil

When you do this keep in mind that Linux and UNIX are case sensitive, which means it

makes a distinction between upper-case and lower-case characters. This means if your

username is benDover you must enter it with lower case ben, upper case D and lower

case over. If you enter the characters in a different case, for example BENdover, the

login process will see it as a different user name and not recognize it as valid.

Figure 2.6 The Command Prompt window.

Also note that you probably want to specify the user name. It’s technically possible to

leave it off and use the following form of the ssh command:

ssh serverDNS

The problem with omitting the user name is that the Windows 10 version of ssh will

automatically add one using the name of the currently logged in Windows user. Plus,

there’s no way to change the user name after the ssh connection is opened. This means

using this form of the command will only work if your Windows user name and your

Linux/UNIX user names are identical. But if the user names are different, or if your

Windows computer is part of an Active Directory network you won’t be able to login

with ssh using this form of the command. And if you’re on an Active Directory network

the default user name that will be used with ssh will be userName@directoryName. For

example, if you’re logged in to the CyberDyne Active Directory domain as the user

robertBrewster and try to open an ssh connection to the skynet.mil Linux server the

user name will be set to robertBrewster@CyberDyne, and the full ssh command will

end up being:

ssh robertBrewster@CyberDyne@skynet.mil

3. Issuing the ssh command will open a connection to the server. If this is the first time

you’ve connected to this server, the server will send an encryption key that will be used

to encrypt all the data from this point forward. You’ll be shown some information about

the encryption key and asked if you want to save it as shown in the following figure.

Make sure and answer yes. This saves the encryption key on your client computer. The

key will be used to encrypt all data sent to the Linux/UNIX server from this point

forward, protecting the data from any attacker that has access to a router between you and

the server.

If you answer no when asked if you want to continue connecting, the ssh session will end

as there’s no way to establish a secure connection without exchanging an encryption key.

The encryption key exchange will only happen the first time you open a connection with

the server. When a key is accepted it’s stored on the client computer and reused anytime

C:\>ssh milesDyson@skynet.mil

The authenticity of host 'milesDyson@skynet.mil (23.38.226.35)'

can't be established.

ECDSA key fingerprint is

SHA256:LDDCB2d1GpzPCI9lBbzhrLIeaUXa9jO3O2VHRcEagE4.

Are you sure you want to continue connecting (yes/no)?

Figure 2.7 Example ssh dialog, asking if you want to save and use the encryption

key sent from the Linux/UNIX server.

a new ssh connection is made to this server. However, if you open ssh connections to

different servers you’ll get a new, different encryption key for each server.

4. After the connection is opened the server will start a login process that will ask you for

your password. The actual prompt will look similar to the following:

milesDyson@skynet.mil's password:

When you enter your password the characters will not appear as you type them. This is

done as a security measure to prevent “shoulder surfing” which is when someone looks

over your shoulder at your password as you enter it. Most password systems, like the one

used by Microsoft Windows, hide the actual characters but display a substitute character

like * instead, to provide some feedback and assurance that you’re typing something. But

the built-in version of ssh provided with Windows doesn’t display anything, because

even knowing how many characters you type can help an attacker, and really decrease the

amount of time required to crack your password. So, don’t be concerned when you type

your password and nothing is displayed. Just hit the <Enter> key when you’re finished

and you’ll be logged in, assuming you entered the password correctly.

5. If you login successfully the system may display a message reporting the last time you

logged in or if you’re lucky a cartoon cow saying something funny. The system

administrator controls the information displayed when you initially login, so what you

see will vary from system to system. The thing you really want to see is called the

command prompt and it will be displayed after any login messages.

The

command prompt gets its name because it’s the indicator that the system is waiting for

you to enter commands. The command prompt is typically a % or $ for normal user

accounts, and a # for the administrator account which is commonly called root. However,

these are just de facto standards and the command prompt can be easily customized, so it

could be almost anything.

At this point you can begin typing commands.

6. If there’s a problem with user name or password you entered you’ll see the message

Permission denied, please try again. After a brief pause the password: prompt will be

displayed again, allowing you to try again. The Windows 10 version of ssh allows 3

failed password attempts before it exits. If this happens you’ll see a message similar to

the following. It’s not the best error message as it doesn’t provide an explanation of the

problem or how to correct it. But in this case it means you entered an incorrect password

more than the allowed number of times.

Last login: Fri Aug 29 1997 02:14 AM

% The command prompt

Figure 2.2 The display after successfully logging in.

Permission denied (publickey,gssapi-keyex,gssapi-with-mic,password)

7. To logout of the Linux/UNIX server use the exit command. When the server receives

this command it will know that you are done, so it can log you out cleanly and close the

network connection.

It is possible to end your session by simply closing the Command Prompt window. The

problem with this type of ungraceful exit is that it may keep using resources on the

server. That is, the server may hold the network connection open and may still be waiting

for you to type commands. You can think of this as being similar to ending a phone call.

It’s better if you say goodbye or give some indication that you’re ending the call. If you

just hang up mid conversation the other person may stay on line and maintain their end of

the connection, and it may take the other person a while to figure out you’re gone.

8. Note that the ssh encryption keys will be stored in the file

C:\Users\<username>\.ssh\known_hosts where username is your Windows user

name. Each key will be stored as a single long line that contains the DNS name of the

server, if it’s known, the IP address of the server, some information about the key, and

the key itself. There’s typically no reason to edit or delete an encryption key, but every

once in a while you’ll run into a situation where you need to delete the encryption key.

For example, if the server is upgraded or changed it may not recognize the old key. If you

ever need to delete an encryption open the known_hosts file and delete the appropriate

line.

Running ssh in an Application - PuTTY
A second option for opening an ssh connection to a Linux/UNIX server is to use a windows

based application. There are several available but one of the most popular is called PuTTY. (The

tty in the name is the abbreviation used for the old terminal ports on a server that allowed a

terminal to be directly connected to the server.) PuTTY is a free, open source program originally

developed by Simon Tatham for Microsoft Windows computers.

Here’s the process for downloading and using PuTTY:

1. Download PuTTY. There are many sites that provide putty downloads, but many of

them are sketchy from a security viewpoint. I suggest downloading from the original

developer’s site at: https://www.chiark.greenend.org.uk/ or from putty.org. Although, if

you go to putty.org the download link will take you back to www.chiark.greenend.org.uk.

NOTE - You may need to add a rule to your firewall to allow PuTTY access to the

network. (See the sidebar below).

2. Install PuTTY. No matter where you download it from, it’s strongly suggested that you

practice safe computing and perform a security scan of the download before starting the

https://www.chiark.greenend.org.uk/

installation. Unless you’ve used PuTTY and ssh before, and have specific requirements,

accept the default options and settings during the install.

3. Start PuTTY. If you didn’t select to start

PuTTY at the end of the install you can

start it by clicking the PuTTY icon on the

Windows desktop or by selecting Putty

from the Windows Start menu. It will be in

either the PuTTY(64-bit) or PuTTY(32-bit)

folder, depending on the version you

installed. When you install PuTTY you get

a few different applications such as Pageant

and PSFTP, so make sure and select

PuTTY.

4. Configure the Connection. The PuTTY Configuration window will appear. The first

thing to note is that there are hundreds of settings that can be configured. If you click on

the different menu items in the Category section on the left side of the PuTTY window

you can view all of the possible settings.

Luckily there are only a few items that need to be set configured to open an ssh session

with a remote server, and they’re all on the Session Category which is the one that’s

displayed by default when PuTTY starts. Here are the minimum settings that need to be

configured:

Make sure that Session is selected in the Category pane as shown in Figure 2.4. Note

that the PuTTY interface may vary slightly from that shown as it has changed over the

years.

• In the Host Name (or IP address) box (1) enter the DNS name or IP address of the

server. In the example the DNS name is skynet.mil.

• In the Connection type: section (2) choose SSH. Note this section was labelled

Protocol in older versions. This will automatically set the Port number (3) to 22.

Figure 2.3 Starting PuTTY from the

Windows Start menu.

• You will also want to check an option under the Connection section. This is an

option that holds the network connection open even if there’s no activity. If you don’t

set this PuTTY will drop the connection if you don’t type anything for just a minute

or two, which can be very annoying.

To prevent timing out prematurely ensure that you’re in the Connection Category

(1), and then set the number in the Seconds between keepalives box (2) to anything

besides 0.

Figure 2.4 The main PuTTY Configuration screen.

• Once you have PuTTY configured you should save the settings as shown in Figure

2.6. This is done by returning the Session Category, supplying a name in the Saved

Sessions (1) box, and clicking the Save button (2). In the example the configuration

settings are saved under the name skynet. The next time you use PuTTY all your

saved configurations will appear in the Saved Settings list. You can reload any of the

saved configurations by clicking on the saved session name and selecting the Load

button or by double-clicking the saved session name.

You don’t actually have to save the settings. It’s just strongly suggested as it will

make opening an ssh connection to a server much quicker if you need to login more

than once.

Figure 2.5 Configuring the keepalive setting to prevent PuTTY from

dropping your connection.

5. Connect to the Linux/UNIX Server. Once PuTTY is configured hit the Open button at

the bottom of the PuTTY window to open the connection to the server. This will open a

new window and open an ssh network connection to the specified server.

If this is the first time you’ve connected to this server, the server will send an encryption

key that will be used to encrypt all the data from this point forward. You’ll be shown

some information about the encryption key and asked if you want to save it as shown in

the following figure. Make sure and answer Accept. This saves the encryption key on

your client computer. The key will be used to encrypt all data sent to the Linux/UNIX

server from this point forward, protecting the data from any attacker that has access to a

router between you and the server.

If you click Cancel the PuTTY session will end as there’s no way to establish a secure

connection without exchanging an encryption key.

Figure 2.6 Saving the PuTTY configuration.

The encryption key exchange will only happen the first time you open a connection with

the server. When a key is accepted it’s stored on the client computer and reused anytime

a new ssh connection is made to this server. However, if you use PuTTY to open ssh

connections to different servers you’ll get a new, different encryption key for each server.

6. PuTTY will now be communicating with the login process on the Linux/UNIX server

which will prompt you to enter your user name and password as shown in the following

figure. Note that the messages and prompts displayed will vary between servers and

Linux distributions. The messages and prompts will be similar to what’s displayed in the

figure, but may not be an exact match.

When you enter your username and password there are two things to keep in mind. The

first is that Linux and UNIX are case sensitive, which means it makes a distinction

between upper-case and lower-case characters. This means if your username is benDover

you must enter it with lower case ben, upper case D and lower case over. If you enter the

characters in a different case, for example BENdover, the login process will see it as a

different username and not recognize it as valid.

The second is that your password may not appear when you enter it. This is done as a

security measure to prevent “shoulder surfing” which is when someone looks over your

shoulder at your password as you enter it. Most password systems, like the one used by

Microsoft Windows, hide the actual characters but display a substitute character like *

instead, to provide some feedback and assurance that you’re typing something. But many

Linux and UNIX systems don’t display anything, because even knowing how many

characters you type can help an attacker, and really decrease the amount of time required

to crack your password. So, don’t be concerned if you type your password and nothing is

displayed. Just hit the <Enter> key when you’re finished and you’ll be logged in,

assuming you entered the password correctly.

Figure 2.7 Message about storing and using the server’s encryption key. You

must click Accept or Connect Once to proceed.

7. If you login successfully the system may display a message reporting the last time you

logged in or if you’re lucky a cartoon cow saying something funny. The system

administrator controls the information displayed when you initially login, so what you

see will vary from system to system. The thing you really want to see is called the

command prompt and it will be displayed after any login messages.

The

command prompt gets its name because it’s the indicator that the system is waiting for

you to enter commands. The command prompt is typically a % or $ for normal user

accounts, and a # for the administrator account which is commonly called root. However,

these are just de facto standards and the command prompt can be easily customized, so it

could be almost anything.

At this point you can begin typing commands.

8. If there’s a problem with user name or password you entered you’ll see a message similar

to Access Denied or Permission denied, please try again. After a brief pause the

password: prompt will be displayed again, allowing you to try again. You’ll be allowed

to try several passwords but each system is configured to drop the connection after some

maximum number of failed attempts. If this happens you’ll see a message similar to the

following.

Figure 2.8 A typical login display. Note that for security purposes many systems

don’t display anything as you enter your password.

Last login: Fri Aug 29 1997 02:14 AM

% The command prompt

Figure 2.9 The display after successfully logging in.

9. To logout of the Linux/UNIX server and close the network connection use the command:
exit

It is possible to end your session by simply closing the PuTTY window. The problem

with this type of ungraceful exit is that it may keep using resources on the server. That is,

the server may hold the network connection open and may still be waiting for you to type

commands. You can think of this as being similar to ending a phone call. It’s better if you

say goodbye or give some indication that you’re ending the call. If you just hang up mid

conversation the other person may stay on line and maintain their end of the connection,

and it may take the other person a while to figure out you’re gone.

10. Note that the ssh encryption keys for PuTTY will be stored in Windows Registry in

HKEY_CURRENT_USER\Software\SimonTatham\PuTTY\SshHostKeys. Each encryption

key will be stored as a single registry key that contains the DNS name of the server, if it’s

known, or the IP address of the server if the DNS name isn’t known. There’s typically no

reason to edit or delete an encryption key, but every once in a while you’ll run into a

situation where you need to delete the encryption key. For example, if the server is

upgraded or changed it may not recognize the old key. If this happens there’s no way to

remove the key from PuTTY, you’ll have to remove the key from Windows Registry.

Troubleshooting – Configuring the Windows Firewall to Allow PuTTY
If you can’t connect to a remote Linux/UNIX server it may be because the firewall on your

computer is set to block the ports used by ssh. In case you can’t connect, here’s a brief

description of the process for setting a rule to allow PuTTY, or to be more technically correct to

allow ssh to make a network connection and pass through the Windows 10 firewall. Note that if

you need more detailed instructions for configuring the Windows firewall or help with another

OS or another versions of Windows you can do an Internet search.

1. Ensure that you know where the PuTTY program has been installed. This is typically in the

folder C:\Program Files\PuTTY.

Figure 2.9 The display after successfully logging in.

2. Open Windows Settings and select Update & Security. Type firewall in the search box on

the left (1). This will display a set of options below the search box. Select Allow an app

through Windows Firewall (2) from the list of options.

3. This will open the Firewall Allowed Apps window. Click on the Allow another app button

(1) at the lower right of the window. If this button is grayed out and disabled you’ll need to

click the Change settings button (2).

Figure 2.10 The Windows 10 Update & Security window.

Figure 2.11 The Windows Firewall Allowed apps window.

4. This will open the Add an app window. If you know the path to the PuTTY executable you

can type it in the Path: box, or you can click the Browse button to find the PuTTY

executable file.

5. This will open the Browse window and allow you to navigate to the PuTTY folder, which is

typically C:\Program Files\PuTTY (1). Open the folder, then select the putty.exe file (2).

You can either double-click the putty.exe file, or select the file and click the Open button (3).

Figure 2.12 The Add an app window.

Figure 2.13 Selecting the putty executable in the Browse window.

6. This will return you to the Add an app window. You should now see SSH, Telnet, Rlogin

and SUPDUP client (1) in the list of Apps: and the path to the putty.exe file in the Path:

box. If this is correct click the Add button, and your PuTTY/ssh connections should now be

allowed through the Windows Firewall.

Troubleshooting – Configuring the Windows Firewall to Allow PuTTY
As you start to use ssh and PuTTY you may notice that some characters sent by the Linux system

look strange when they’re displayed. All the normal text characters will display without problem,

but some characters such as – or dash character may be displayed as â. The root cause of this is

that the problematic characters are in the range 128-255 in the ASCII character set, and for many

years these ASCII numbers were left undefined. Appendix A contains a copy of the ASCII table

showing characters in the range 0-127. This meant that interpreting characters in the range 128-

255 was left up to each device. There are several ways to fix this problem if it occurs1, but one of

the simplest is to type the following command after you’ve logged in:

setenv LANG “en_US”

Note that this is case sensitive and must be typed exactly as shown to have an effect. You will

have to do this every time you log in, until you learn how to add it to one of your start-up files

later in a later chapter.

1 https://fixyacloud.wordpress.com/2020/01/26/how-to-fix-putty-showing-garbled-characters/

Figure 2.14 The Add an app window after PuTTY has been selected.

Changing Your Password
Once you have successfully logged in to a system for the first time, the next thing you should do

is change your password. This is done using the passwd command. When you run the passwd

command you’ll be asked to enter your old password, to ensure you’re the account owner, then

prompted twice for the new password to ensure you typed it in correctly.

When the passwd utility runs the dialog will look something like the following. The items you

need to type are displayed in bold text.

 % passwd

 Changing password for username.

 Enter old password: yourOldPassword

 Enter new password: yourNewPassword

 Re-type new password: yourNewPassword

 passwd: all authentication tokens updated successfully.

The system does some basic checking of the new password before accepting it, and will prompt

you if your password doesn’t meet the password rules for the system. For example, there’s

probably a minimum length rule, but there also may be rules that require both upper and lower

case characters, etc.

The Linux/UNIX Filesystem
Now that you’re able to login, the next thing to do is to start looking at and getting familiar with

the main folders and files on a Linux system. One of the facts of life regarding modern computer

systems like Windows or Linux and UNIX, is that they have hundreds of thousands of files. You

don’t need to know about all the files on a system as many of the files used by the Operating

System files aren’t of particular interest to a casual user. But there are a few system folders you

should aware of, and you should know how to see the different drives connected to the system,

plus you’ll need to know how to view your own files and folders. So in this section you’ll learn

the commands for moving around the file system and viewing the files stored in a directory or

folder, and you’ll use this knowledge to look at the some of the main folders in the Linux/UNIX

file system structure.

Basic Command Structure
In this chapter you will learn how to use several commands. To execute a command or run a

program you simply type the command name. In general, the things you type on the command

line will have this structure:

command -options arguments

You will always type the main command, but some commands may also have options and

arguments. Options are typically designated by a dash “-“, and they are used modify the things

the command does.

Some commands also require extra information, called arguments to operate. The term argument

doesn’t refer to the disagreement type of argument; it’s a programming term for things that you

supply to the command. The arguments are typically things you want the command to work on.

For example, a file that you want to delete would be an argument to the command for deleting

files.

Exploring the Linux/UNIX file system, ls, cd and pwd
Ok, let’s get started looking at the files and folders in the Linux/UNIX filesystem. One of the

first things to do is become familiar with the layout of the files and directories in the

Linux/UNIX file system. This is a lot like moving to a new city and trying to get oriented. You

know the city probably has a grocery store, coffee shop, gas station, and hopefully a hospital or

medical center. When you move somewhere new you need to figure out where the stores and

services you want to use or need to use are located. Similarly, when you start learning about a

new computer system you know the system files will be stored somewhere, and programs will be

stored somewhere, and user files like documents, or music, or photos will also be stored

somewhere. When you first start you won’t know exactly where things are located, but in the city

or on the computer you can start looking around until you get oriented.

With Windows Explorer, and any system with a GUI, you can move through the file system by

clicking on different folders, and it’s easy to tell where you are in the file system because

Windows Explorer displays it graphically. But with DOS and the Linux/UNIX command line

you have to use commands to move from directory to directory, and different commands to

display the files and folders in a directory, and to figure out where you’re currently located in the

filesystem. In DOS the CD command is used to move around the file system and the DIR

command is used to list or view the contents of the various directories. In Linux/UNIX, you use

the cd command to move between directories or folders, the ls command to see the files inside

a directory, and the pwd command to display your current location.

The ls command - listing the contents of a directory
The ls command is similar to DIR in DOS as it displays a list of most of the files in the

directory. To run this command and see the contents of the directory you’re currently located in

type:

ls

When you first login to a Linux/UNIX system you’re placed in your home directory. And since

new users don't have many files in their home directory you may not see much if you’re in your

home directory, maybe nothing at all. It is possible that your system administrator created some

files for you, and if so, their names will be displayed, but it’s very likely you won’t see anything

displayed.

By default, the ls command displays a list of the files in the directory you’re currently in. This

is like Windows Explorer, which shows you the files in the currently open folder. But the ls

command can also be used to display the files in a different directory, by supplying the path to

the directory as an argument. For example:

ls /etc

This will display the files in the /etc directory. This is useful when you want to see the files in

another directory, but you don’t necessarily want to move there first. (You’ll learn about the

typical Linux directories, changing directories, and how to specify the path to a directory or file

later.)

If ls doesn’t list any files it doesn’t necessarily mean there aren’t any files in the directory. It’s

possible that the directory has some files that are called hidden files, especially in your home

directory. On Linux/UNIX systems, any file that has a name that starts with a period or dot is

considered hidden and will not be displayed by running ls. If you want ls to display all of files

in a directory, including the hidden files, you need to use the –a (for all) option with the ls

command by typing:

ls –a

Note – the hidden files aren’t hidden for security reasons. As you can see (no pun intended)

they’re easy to display using ls –a. The hiding is done more for housekeeping purposes.

That is, the hidden files are usually configuration files which are used to control your

personalization settings for various programs. Hiding them from the normal ls display keeps

them from cluttering up the display amongst your actual data files and programs. In addition,

hiding them provides a little protection when you do something like run the command to delete

or move all the files in your home directory. It’s not great protection as you can easily override

it, but it does provide a little protection as you do have to actively override the protection. This

just makes it harder to accidentally delete or move the files. Linux/UNIX has other ways to

protect files besides just hiding them, unlike DOS/Windows where the Hidden Attribute was

often set to try and protect files.

To see more detailed information about each file, use the –l (for long listing) option for the ls

command. That is, type:

ls –al

Note that the option order doesn’t matter, that is ls -al and ls -la are equivalent. You’ll

learn exactly what this extra information displayed by the -l option represents later, but you

could take a minute and try and decipher what this extra information might mean on your own.

Compare this to what you see when you set Windows Explorer to show you the detailed listing

for files.

The cd command (change directory)
The cd command is used to change the current directory and works much like the

DOS/Windows CD command. For example, to move to the /usr directory you would type:

cd /usr

Typically, you provide the cd command with the name or path of the directory/folder you wish

to move to. That is, you wouldn’t just type cd by itself. But in some Linux distributions typing

cd with no arguments will move you to your home directory. (You’ll learn more about directory

paths and your home directory below.)

The pwd command - print working directory
When a user is logged onto a Linux/UNIX system, they are always somewhere in the file system.

With Windows, or if you’re using Linux with a GUI, you can open a program like File Explorer

and simply look to see where you’re at in the file system. But if you’re using the command line

and typing commands you have to keep track of your location on your own. If you can’t

remember where you are you can use the pwd command as it displays the pathname of the

current directory.

Absolute and Relative Paths
When you start working with the cd and ls commands, you’ll be asking them to move you to a

different folder, or possibly list the files in a different folder. Telling these commands about

different directories or different folders is done using something called a path. There are two

types of paths, absolute and relative, and when it comes to changing directories it’s crucial to

know the difference between absolute and relative paths, and when and how to use them.

The first concept to understand about both absolute and relative paths is that they’re ways of

providing directions to a folder or a file. An easy way to understand the difference between an

absolute path and a relative path is to compare them to directions you’d give with a map.

Look at the following map, which we’ll use to demonstrate absolute and relative paths.

The main things to note are:

1. The Town is at the top of the map. This is equivalent to the top directory, or as we call it

in the Linux the root directory.

2. As you traverse the map leaving from Town, there’s only one set of trails that will get

you to any destination. This is much different than real life, where there are typically

many different inter-connected roads and trails, and multiple routes you can take to get

from one place to another. But having only one way to get to any destination is exactly

like a computer’s filesystem, where there’s only one way to get down into a folder or

directory.

3. Conversely, if you’re at any location on the map, there’s only one trail you can take that

will take you back towards Town. There might be multiple trails out of any location, but

only one will lead back towards Town. This is like the computer filesystem, where each

folder can have multiple sub-folders, but each folder can only have one parent folder.

Figure 2.15 Map of the Linux Mountain National Park, which will be used to demonstrate

absolute and relative paths.

That is, there’s no way for a folder to be inside two different folders at the same time, it

can only be inside a single folder.

Now say that you’re employed as the Linux Park Ranger in charge of the area covered by the

map. You spend most of your time outdoors, travelling from place to place on the map checking

conditions of the trails and facilities, and helping hikers and campers. When you meet people one

of the main things they ask you for is directions.

The simplest directions you can provide will show how to move between adjacent locations. For

example, say someone asks you how to get from Base Camp to the Mountain Trail, or from Bear

Ridge to Hawks Peak, or from the Beaver Dam back to the River Trail. You may also be asked

to provide more complicated directions, like how to get from Base Camp to the Beach, or from

Hawks Peak to the Frog Pond. We’ll first show you how to provide directions between adjacent

locations, and then move on to more complicated directions.

Moving Between Adjacent Locations

To provide directions for moving between adjacent locations you’re either going to tell them to

go back towards Town, or which trail to take from the current location. In either case it’s just one

hop on the map from the current location.

If the people you’re helping want to go somewhere that’s in the direction away from Town you

simply tell them the name of the trail to take. For example, if you’re currently on the Mountain

Trail and they want to get to Moose Peak you just tell them to go to Moose Peak. Or if you’re

currently on the River Trail and they want to go to the Beaver Dam you just tell them to go to the

Beaver Dam. It’s that simple.

If they’re going back towards Town it’s even simpler. You don’t need to specify which trail they

should take, because there’s only one way back, you just say go back towards Town. And to

make it even easier you’ve developed a shortcut or code for telling people to take the trail back

to Town, which is to say or write .. or two dots or periods in a row. For example, if you’re

currently at Hawks Peaks and want to get back to Bear Ridge the directions would be .. Or if

you’re Bear Ridge and want to get back to the Mountain Trail the directions would also be just ..

More Complicated Directions, Making Multiple Hops

The next situation to discuss is when someone asks you to provide more complicated directions.

That is, they want to get somewhere that isn’t adjacent to your current location. Or in technical

terms the place they want to go is more than one hop away. When you provide directions for

destinations that require multiple hops you have to choose between two methods of providing the

directions, or maybe it would be more accurate to say you have to choose between two different

starting points. You can always start the directions at Town, or you can start the directions from

your current location. Everybody knows where Town is since they had to pass through the Town

to get to any location on the map. So, you could always start your directions at Town and be

assured that the people you’re helping will be able to get to their desired destination. For

example, if someone wanted to get to the Big Lake you could provide these directions:

1. Start at Town and take the road to Base Camp

2. Take the River Trail

3. When you get to the end of the River Trail, take the Big Lake trail

You other choice is to start the directions from your current location. For example, say you and

the people you’re helping are at the Beaver Dam and they want to know how to get to the Beach.

In this case you could provide these directions:

1. Start from here, and head back up the trail until it intersects the River Trail

2. At that point, take the trail to Big Lake

If you start the directions at Town, this would be like an absolute path. The thing that makes this

an absolute path is that it always starts at the top of the map at the Town. With absolute paths it

doesn’t matter where you are currently located, you must go back to a fixed starting point, the

Town, to start.

Your second option for providing directions would be to use relative paths, where you start them

relative to your current location.

While you can use either absolute or relative paths to reach any location on the map, you also

want to make your directions as easy to follow as possible. To decide which one is easier, you

need to look at both your current location and the destination. In some cases, the choice will be

obvious, but in other cases both sets of directions might be equally easy to follow.

Here are some examples of obvious choices:

A. Say you’re at the Beach and someone wants directions to Otter Creek. In this case the

relative directions will be much simpler to explain and quicker to follow.

Absolute Directions Relative Directions

From Town, take the road to Base Camp Head back up the trail until you reach Camp 2

Take the River Trail Take the trail to Otter Creek

Take the trail to Camp 2

Take the trail to Otter Creek

B. Say you’re at Goat Rocks and someone wants directions to Big Lake. In this case the

absolute directions will be simpler to explain.

Absolute Directions Relative Directions

From Town, take the road to Base Camp Head back up the trail until you reach Bear Ridge

Trail

Take the River Trail Head back up Bear Ridge Trail until you reach the

Mountain Trail

Take the trail to Big Lake Head back up the Mountain Trail until you reach the

Base Camp

 Take the River Trail out of Base Camp

 Take the trail to Big Lake

And here’s an example where the choice isn’t obvious because they’re roughly equivalent:

C. Say you’re at Bear Ridge and someone wants directions to Big Lake.

Absolute Directions Relative Directions

From Town, take the road to Base Camp Head back up the trail until you reach the Mountain

Trail

Take the River Trail Hike back up the trail until you reach Base Camp

Take the trail to Big Lake Take the River Trail

 Take the trail to Big Lake

If we actually had to hike to get from one place to another then in this last example using the

relative path would be easier. No one wants to walk to Town just to turn around and walk back

again. But luckily (or sadly if you like hiking) moving around the computer file system doesn’t

involve any physical effort. The main point of the example is to demonstrate that sometimes

there’s not an obvious better choice between relative and absolute paths.

To make our directions a little more like the paths in a computer’s filesystem let’s introduce one

new character or special symbol that we can use to make the directions more succinct and also

take a closer look at using .. to move one step back towards Town.

The / character is used for three purposes:

1. If it’s used by itself, it’s a code for saying go to the Town. So, if you tell someone to go

to / this means they should go back to the Town.

2. If the / is placed at the start of a set of directions it means the directions begin on the

trails coming from Town and not from our current location. Since the Town is a fixed

location this means we’re using absolute directions. For example, /Base Camp means to

start at the Town, and from there go to Base Camp. Your current location doesn’t matter,

if you see the / at the start of the directions the first thing you should do is go back to

Town and start there.

3. If / is placed between two areas, it means to travel from the first area into the second

area. For example, River Trail/Camp 2/Beach means to travel to the River Trail, then to

Camp 2, and from there to the Beach.

Now let’s take a closer look at .. which represents the single trail out of any area. As explained

above, .. is short hand for an instruction to head one hop back towards the top of the map or back

towards Town. For example, if you were at Hawk Peak .. would refer to the trail back to Bear

Ridge. You don’t have to specify Bear Ridge, because the only trail back towards Town from

Hawks Peak is the one to Bear Ridge.

If you want to take multiple trails back towards Town you always represent each trail going

towards Town with .. For example, the directions from Small Lake to the River Trail would be

../.. The first .. represents the first hop back towards Town which is the trail from Small Lake to

Camp 2, the / is the delimiter between the trails, and the second .. means to take another hop

back towards Town from Camp 2, which is the trail to the River Trail.

It’s important to note that if our directions start with / they’re absolute directions, but if they start

with any other character, they’re going to be relative directions. You should also note that when

you’re using a relative path you do NOT specify the current location. In a relative path the first

thing you specify will either be .. if you want someone to head back towards Town, or the name

of the place to go if the first step is to move down a trail away from Town.

Here are some example directions that make use of the / and .. characters:

A. The absolute path to get to Goat Rocks would be: /Base Camp/Mountain Trail/Bear

Ridge/Goat Rocks. Since this starts with / it means to start to start at the Town.

B. The absolute path to get to the Beaver Dam would be: /Base Camp/River Trail/Beaver

Dam. Since this starts with / it means to start to start at the Town.

C. The relative path to get from Puma Ridge to the Cliffs would simply be: Cliffs. Since this

does NOT start with / it tells a person to travel from the current location. Note that if you

gave someone the instructions /Cliffs it would mess them up. The / would tell them to go

to Town, and once there they wouldn’t be able to find the trail to the Cliffs. The trail

name Cliffs only makes sense if you’re currently located on Puma Ridge.

D. The relative path to get from the Mountain Trail to Goat Rocks would be: Bear

Ridge/Goat Rocks. Since this does NOT start with / it tells a person to travel from the

current location. Once again if you gave someone the instructions /Bear Ridge/Goat

Rocks it would mess them up. The / would tell them to go to the Town, and once there

they wouldn’t be able to find the trail to Bear Ridge. The trail name Bear Ridge/Goat

Rocks only makes sense if you’re currently located on the Mountain Trail.

E. The relative path to get from the Base Camp to Small Lake would be: River Trail/Camp

2/Small Lake. Since this does NOT start with / it tells a person to travel from the current

location.

F. The relative path to get from Otter Creek to the Beaver Dam would be: ../../Beaver Dam.

Dissecting this results in the following:

• Since it doesn’t start with a / it’s a relative path, which means we start at the current

location which is Otter Creek

• The first .. means to take the trail from Otter Creek up to Camp 2.

• The / is a delimiter between instructions

• The second .. means to take the trail from Camp2 up to the River Trail

• The / is a delimiter between instructions

• Beaver Dam means to take the Beaver Dam trail

G. The relative path to get from Otter Creek to Goat Rocks would be: ../../../Mountain

Trail/Bear Ridge/Beaver Dam. Dissecting this results in the following:

• Since it doesn’t start with a / it’s a relative path, which means we start at the current

location which is Creek

• The first .. means to take the trail from Otter Creek up to Camp 2.

• The / is a delimiter between instructions

• The second .. means to take the trail from Camp2 up to the River Trail

• The / is a delimiter between instructions

• The third .. means to take the trail from Camp2 back up to the Base Camp

• The / is a delimiter between instructions

• Mountain Trail/Bear Ridge/Goat Rocks means to take the Mountain Trail followed

by the Bear Ridge trial down to Goat Rocks.

Notice that in this case it might be simpler to use an absolute path. That is /Base

Camp/Mountain Trail/Bear Ridge/Beaver Dam seems much simpler to me than

../../../Mountain Trail/Bear Ridge/Beaver Dam.

Using paths with Linux Commands
Now let’s switch from our map analogy and look at how paths are used with Linux commands.

To do this we’ll use a filesystem layout that uses a set of folders with the same names as the

areas on the map, organized in a similar fashion, as shown in the following two images. Both

images display the same folder/directory configuration, they’re just in different layouts to help

you visualize how the folders are organized. Note that this is just a fictitious layout, a real Linux

system has different directories. But we’ll stick with this layout for this initial demonstration.

Figure 2.16 Viewing the Linux National Park Map as a set of folders or directories.

Figure 2.17 An alternate view of the Linux National Park Map as a set of folders or

directories.

In a computer’s filesystem the absolute and relative paths work just like they do with the map

directions. The main differences from our map are:

1. On our map the top area has a name, Town, while in the filesystem it will just be referred

to as /

2. The spaces in the area names have been removed. That is Otter Creek on the map is

called OtterCreek in the filesystem. It is possible to have spaces in the folder names in the

Linux filesystem, but file and folder names with spaces are harder to work with. So, I’ve

removed the spaces from the names for this demonstration.

The commands we’ll use for the demonstration are cd, for changing directories, and ls for

displaying the files and folders in a directory.

Making one hop up or down

The first thing to demonstrate is using the cd command to move down one directory or move up

one directory. To move down one directory, you simply give cd the name of the folder you want

to move into. For example, say you’re in the BaseCamp folder and you want to move down into

the MountainTrail folder. To accomplish this you would type:

cd MountainTrail

To move up one directory you use the .. symbol. This is also referred to as the parent folder or

directory. For example, if you are currently in the HawksPeak folder .. would refer to the

BearRidge folder and to move to BearRidge from HawksPeak you would use:

cd ..

In this example, or any time you move up one folder, you don’t specify the name of the parent

folder. Or this case you don’t specific the name BearRidge, because the HawksPeak folder only

has one parent directory, which is the BearRidge directory.

Note that if you’re in the HawksPeak folder and use the command cd BearRidge it will result

in an error because the cd command will be in the HawksPeak directory looking for a sub-

directory named BearRidge, and won’t be able to find BearRidge. Or if you use cd

../BearRidge it will also be an error because the cd command will start in the HawksPeak

directory, follow the instruction .. and move up one directory into the BearRidge folder, and then

look for a sub-directory named BearRidge; which will also be an error. When you want to move

up one folder, or to move to the parent directory just type cd ..

If you want to use the ls command to display the content of a folder that’s directly below the

current folder you would type ls followed by the folder name. For example, assume you’re in

the BearRidge directory and you want to see a list of the files in the GoatRocks folder. To

accomplish this you would type:

ls GoatRocks

If you’re in the GoatRocks folder and you want to see what’s in the BearRidge folder you would

use:

ls ..

Once again you only use .. You don’t use the name BearRidge or ../BearRidge because this

would cause an error.

Making multiple hops

To move more than one directory in either direction you’ll need to specify an absolute or relative

path as the destination. When we use absolute and relative paths to describe locations on a

computers filesystem we’ll still use the / and .. characters like we did with the map. But in this

case, since we’re talking about the filesystem and not a camping map, the / and .. characters

will take on these meanings:

1. / is used for three purposes:

a. If it’s used by itself, without any other folder name, it’s a code for saying go to

the top-level folder, which is also called the root directory. So, if you tell

someone to go to / this means they should go back to the root directory. (The root

directory gets its name from the fact that if the entire directory structure is flipped

over, it can be viewed as a tree with branches made from the paths to the various

folders. In this case the / directory would be like the tree’s root, hence the name.)

b. If the / is placed at the start of a path it means the path begins at the root directory

and not from our current location. Since the root directory is a fixed location this

means we’re using absolute directions. For example, /BaseCamp means to start at

the root directory, and from there go into the Base Camp folder. Your current

location doesn’t matter, if you see the / at the start of the path the first thing you

should do is go back to the root directory.

c. If / is placed between two folder names, it means to travel from the first folder or

directory down into the second folder. For example, RiverTrail/Camp2/Beach

means to move from the current directory into the RiverTrail folder, then to the

Camp2 folder, and from there to the Beach folder.

2. .. which represents the single path out of any folder which heads back towards the top

directory.

3. If you want to take multiple hops back towards the root directory you always represent

each parent directory with .. delimited by a /

For example, to move from the SmallLake folder to the RiverTrail folder the command

would be cd ../.. The first .. represents the move from the SmallLake directory to

its parent folder which is Camp2. The / is the delimiter between the folders, and the

second .. means to move to the parent directory of the Camp2 folder, which is the

RiverTrail folder.

Your Home Directory and the ~ (tilde) shortcut
In a minute we’ll go through several examples of using the cd and ls commands in

combination with relative and absolute paths. But before we do that there’s one other important

piece of information you need to be armed with. This regarding your home directory, which is

the folder the OS places you in when you first login. This is similar to the Documents folder on a

Windows system, as it’s generally thought of as a place for a user to store their files. But it’s

important to note that on a Linux system this will be the folder that the system places you in

when you first login.

The exact location of your home directory is set by the system administrator when your account

is created. It’s common practice on systems with multiple users to give each user their own home

directory under the /home directory. It’s also common practice to give the user’s home

directory the same name as the user. For example, the user stesha would be assigned the home

directory /home/stesha, and each time Stesha logged in she would initially be in the

/home/stesha directory. While using /home/username for home directories is common

practice, it’s not a requirement and the system administrator can choose to make the home

directories anywhere in the filesystem, or they may even choose to not have home directories.

When you’re changing directories or specifying directory paths the ~ or tilde character is used as

a shortcut for your home directory. For example, if your home directory is /home/jose the

path ~/junk is equivalent to /home/jose/junk. Or, if you want a quick way to return to

your home directory you can simply type cd ~

On some Linux distributions you can also move to your home directory by typing cd with no

arguments. That is, simply type: cd But note this doesn’t happen with every distribution, so I

don’t count on it and typically type cd ~ since it only costs me the time of typing one additional

character.

Examples of using absolute and relative paths with the ls and cd commands
Here are some examples of using absolute and relative paths with the cd command to change

directories, and with the ls command to display the contents of different folders or directories.

All the examples the following filesystem structure shown in the following diagram. Note that

this is just a portion of the filesystem for a fictional Linux system. Most of the folders you’d find

on an actual Linux system have been omitted to keep things simple enough to be usable in these

examples.

Absolute path examples

A. To move from any directory to the root directory the command would be:

cd /

B. To move from any directory to the /etc directory the command would be:

cd /etc

C. To move from any directory to the /etc/yum directory the command would be:

cd /etc/yum

D. To move from any directory to the /usr/local/python directory the command would be:

cd /usr/local/python

E. To move from any directory to the /home/zara/artClass/photos directory the command

would be:

cd /home/zara/artClass/photos

Relative path examples

A. To move from the root directory to the /etc folder the command would be:

cd etc

Note – since etc is a sub-directory of the root directory you could also use:
cd /etc

B. To move from the root directory to the /etc/yum folder the command would be:

cd etc/yum

Figure 2.18 An example of some of the folders in a typical Linux install.

C. To move from the /etc directory to the root directory the command would be:

cd ..

D. To move from the /etc directory to the /home/amir directory the command would be:

cd ../home/amir

E. To move from the /etc directory to the /home/amir/music directory the command would

be:

cd ../home/amir/music

F. To move from the /home/amir/music directory to the /home/amir/school directory the

command would be:

cd ../school

G. To move from the /home/amir/school/psych directory to the /home/amir/school/papers

directory the command would be:

cd ../papers

H. To move from the /home/amir/school/papers directory to the /home/amir directory the

command would be:

cd ../..

I. To move from the /home/amir directory to the /home/zara directory the command would

be:

cd ../zara

J. To move from the /home/amir/music directory to the /usr directory the command would

be:

cd ../../usr

Note – in this case it would be simpler to use the absolute path and the command:
cd /usr

K. To move from the /home/amir/music directory to the /usr/local/rpm directory the

command would be:

cd ../../usr/local/rpm

Note – in this case it would be simpler to use the absolute path and the command:
cd /usr/local/rpm

Examples using the ~ (home directory) shortcut

This set of examples will demonstrate using the ~ shortcut for your home directory. In this case

assume that your home directory is /home/zara

A. To move from any directory to your home directory the command would be:

cd ~

B. To move from any directory to /home/zara/artClass the command would be:

cd ~/artClass

C. To move from any directory to /home/zara/artClass/photos the command would be:

cd ~/artClass/photos

The Linux UNIX File System

The Linux/UNIX file system is similar in many ways to FAT and NTFS, the file systems used by

Windows; or the file and folder system used on the MAC. While there are technical differences

in the way the file systems are structured and implemented that are of concern to system

programmers or system administrators, to a user the Linux filesystem should look very familiar

to a Windows or Mac user.

Like on Windows, the Linux/UNIX file system uses directories to organize files, and these

directories can contain their own sub-directories. Of course, there are also a couple of significant

differences that users will immediately see.

The first difference is that Linux/UNIX has a

single top directory “/” which is called the root

directory or just root. Other filesystem

implementations, such as Windows may have

multiple top directories. That is, they’ll assign

each drive a letter such as A: B: C: etc. and have one

top level directory for each logical/physical

drive mounted on the system. Linux and UNIX on

the other hand don’t use drive letters for

different drives. Instead, they mount each drive as a

subdirectory somewhere under the single root

directory. For example, if you connect a USB

drive to a Linux system it will be mounted in a sub-

directory with a name like /media/usb.

The fact that the Linux filesystem has a single top level directory is very important. Remember

that it’s like the old Highlander movies … There can be only one.

The second difference between the Linux/UNIX filesystem and the Windows filesystem is that

the directory names are not the same. Although Linux/UNIX systems have directories that are

Figure 2.19 A Highlander meme

(Christopher Lambert)

very similar in function to Program Files, WINNT or Windows, and Documents and Settings or

Users, the names are different.

If you were to do an ls –al on the root (top level) directory of a Linux system you would see

something like the following. (NOTE – your results will be similar but will probably not be

exactly the same.)

drwxr-xr-x 18 root root 1024 Apr 18 14:24 ./

drwxr-xr-x 18 root root 1024 Apr 18 14:24 ../

dr-xr-xr-x. 5 root root 4096 Oct 30 2019 boot

drwxrwxrwt 3 root root 1024 Apr 18 16:15 etc

drwxr-xr-x 2 root root 1024 Sep 4 03:23 mnt

drwxr-x--x 3 root root 1024 Apr 16 09:44 proc

drwxr-xr-x 2 root bin 2048 Apr 16 14:36 sbin

drwxrwxrwt 3 root root 1024 Apr 18 20:15 tmp

drwxr-xr-x 18 root root 1024 Apr 18 14:27 usr

drwxr-xr-x 14 root root 1024 Apr 16 14:36 var

drwxr-xr-x. 99 root root 4096 Jun 13 17:41 home

Those entries which are (sub) directories are preceded with a d character. If this were to be

drawn or envisioned graphically it would look like

Note – one of the things that confuses many Linux users, both new and experienced, is all the

different bin and sbin folders used to store programs. Here’s a quick explanation that may help.

/bin This directory contains executable programs which are needed in single user

mode and to bring the system up or repair it.

/sbin Like /bin, this directory holds commands needed to boot the system, but which

are usually not executed by normal users.

/usr/bin This is the primary directory for executable programs. Most programs executed

by normal users which are not needed for booting or for repairing the system and

which are not installed locally should be placed in this directory.

/usr/sbin This directory contains program binaries for system administration which are not

essential for the boot process, for mounting /usr, or for system repair.

Like almost any subject in Linux and Compuer Science, there’s a lot more to know about this. If

you want to know more about the differences between the different bin and sbin directories you

Figure 2.20 A graphic depiction of some of the top level Linux folders or directories.

can do your own research and go down the rabbit hole. Just keep in mind that at this point you

really just need a general idea of what the main Linux directories are used for. You don’t need to

memorize all the directory names and what they store.

What drives are connected to the system – the df and lsblk commands
As you look/snoop around any computer one of the things you might want to know is what hard

drives or SSDs or removable drives are connected and available. On Windows you can easily

find a list of all the storage devices using Windows Explorer, and each disk and device is

assigned its own drive letter.

With the Linux and UNIX command line this information is a little trickier to find and interpret.

One of the problems with the Linux/UNIX file system is that the drives and devices are not given

their own drive letters. Remember that instead they’re “mounted” to a folder somewhere in the

main file system. So it’s not obvious where the various drives or partitions have been mounted in

the file system. Or for that matter, finding the removable drives and devices such as CD/DVD

drives, USB drives, or floppy drives.

The second problem is that there are ways to display the drive information in Linux/UNIX, but

it’s not quite as user friendly and you need to know how to interpret the drive and device names.

There are a couple of commands that you can use to find the drive information but the df

command is probably the easiest to use. The df (disk free) command shows you where different

devices and partitions have been mounted as well as how much disk space is available on the

various partitions and drives.

Here's an example of the output from the df command:

Filesystem 1K-blocks Used Available Use% Mounted on

/dev/sda1 37640236 4468804 33171432 12% /

/dev/sda2 508588 296036 212552 59% /boot

/dev/sdb1 18376704 5758340 12618364 32% /home

The first column, labelled Filesystem, shows the disk or disk partition being used. This is the

most user unfriendly part of the display, but once you know how to read this it should make

sense. All the physical devices will start with /dev, and then have a string of 4 or more characters

that identifies the specific device. The first two or three letters define the type of device. In the

example all the devices start with sd, which used to stand for SCSI hard drive, but is now used to

identify almost all drives including USB drives, SSDs, and both SCSI or SATA/PATA drives.

The next letter is the identifier for the physical drive, with a being the first drive, b the second

drive, c the third drive etc. The last number identifies the partition on the drive. For example

sda1 is the first partition on the first drive, and sda2 is the second partition on the first drive.

The example df output shows that there are two hard drives, sda and sdb, and that sda is divided

into two partitions, sda1 and sda2.

The next three columns of df output show the size of the drive or partition, how much is used,

and what percent of the drive space is still free. The sizes are given in the number of blocks,

where each block is 1024 bytes. These numbers are probably easier to understand in MBytes and

GBytes, which you can approximate if you’re a math fiend by dividing by 1000 for MBytes or

100000 for GBytes. Or an easier way to get user friendly numbers is to use the –h option with

df, which will show the numbers in MBytes and GBytes. For example running df –h on the

same system as above results in:

Filesystem Size Used Avail Use% Mounted on

/dev/sda1 36G 4.3G 32G 12% /

/dev/sda2 497M 290M 208M 59% /boot

/dev/sdb1 18G 5.5G 13G 32% /home

The last column shows what we really want to see, which is where the drive is mounted in the

file system. The folders shown in the df output are called the mount point for each drive. In this

case the second hard drive is mounted to the /home directory. If you move to the /home

directory, or any directory below /home like /home/tests/test3, you’ll actually be on the second

hard drive.

The following image depicts how the drives or partitions are mounted in the filesystem. Notice

that since /home is a mount point for /dev/sdb1, all the subdirectories of /home will be on the

/dev/sdb1 drive. That is, as soon as you move into the /home directory you’ll be on the sdb1

drive. And if you move into any subdirectory of /home or any of their subdirectories you’ll be on

the sdb1 drive.

You can think of this like changing drives in Windows by specifying a different drive letter. For

example, if Windows assigns E: to the sdb1 drive, you’ll be on the sdb1 drive any time you move

to the E: drive. But in Linux and UNIX there are no drive letters, instead you change drives by

changing to the directory where the drive is mounted in the filesystem.

Note that in this example if you move to the /boot directory you’ll also move to a different drive

partition. The last thing to note is that any folders that are not under /boot or /home will be on the

/dev/sda1 drive.

Figure 2.21 How disks are mounted to directories in the main filesystem, as opposed to

being given separate drive letters.

The lsblk command is another command that can be used to view the connected drives and

partitions. The name lsblk will make more sense if you think of it as a combination of the ls

command and blk, which stands for block level devices. In Linux and UNIX devices are

categorized as either block level, where a large block of data is read or written, or character level,

where a single character is read or written. All the drives we want to see, like hard disk drives or

SSDs are block level devices.

The following is an example of the output from lsblk:

% lsblk

NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT

sda 8:0 0 36G 0 disk

 sda1 8:1 0 36G 0 part /

 sda2 8:2 0 497M 0 part /boot

sdb 8:0 0 60G 0 disk

 sdb1 8:1 0 60G 0 part /home

This makes the relationship between the disks and partitions a little more obvious. But in any

case, the important thing is that it shows the directories where the disks are mounted in the

filesystem.

Removable Drives

As a user you probably don’t really care what hard drives and partitions are being used, or where

they’re mounted. But, it is helpful to know where removable drives like USB thumb drives or

external drives are mounted. Again, think of a computer running Windows. If you want to copy

files to or from a thumb drive you’ll need to know the drive letter. With Linux you’ll need to

know where the thumb drive is mounted in the file system, so the df or lsblk commands can

be very helpful.

What’s going on? The Linux/UNIX equivalent to task manager
As you continue snooping around a computer system one of the next things you might want to

figure out is what programs or processes are running. On Windows systems you can run Task

Manager and find out this information in a couple different levels of detail. On Linux/UNIX

systems the ps (process status) command and the top command are used to show what’s

currently running. The ps command, without any command options, will show what processes

you have running. You’ll always see at least 2, the ps process and your shell process, but there

may be others. The top command shows the information for all user and system processes, so

like Task Manager in Windows, there’s a lot more information. The following shows sample

output from the top command.

top - 14:58:19 up 182 days, 23:53, 1 user, load average: 0.01, 0.03, 0.05

Tasks: 116 total, 1 running, 115 sleeping, 0 stopped, 0 zombie

%Cpu(s): 0.0 us, 0.2 sy, 0.0 ni, 99.8 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st

KiB Mem : 7999996 total, 1036120 free, 4468396 used, 2495480 buff/cache

KiB Swap: 6291452 total, 6288360 free, 3092 used. 2706892 avail Mem

 PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND

35057 bdover 20 0 154664 2516 1168 S 0.3 0.0 0:00.17 sshd

 1 root 20 0 128108 4932 2928 S 0.0 0.1 31:37.99 systemd

 2 root 20 0 0 0 0 S 0.0 0.0 0:05.48 kthreadd

 4 root 0 -20 0 0 0 S 0.0 0.0 0:00.00 kworker/0:+

 6 root 20 0 0 0 0 S 0.0 0.0 0:12.48 ksoftirqd/0

 7 root rt 0 0 0 0 S 0.0 0.0 0:04.47 migration/0

 8 root 20 0 0 0 0 S 0.0 0.0 0:00.00 rcu_bh

 9 root 20 0 0 0 0 S 0.0 0.0 10:43.29 rcu_sched

 10 root 0 -20 0 0 0 S 0.0 0.0 0:00.00 lru-add-dr+

 11 root rt 0 0 0 0 S 0.0 0.0 0:54.67 watchdog/0

 12 root rt 0 0 0 0 S 0.0 0.0 0:41.86 watchdog/1

 13 root rt 0 0 0 0 S 0.0 0.0 0:04.76 migration/1

 14 root 20 0 0 0 0 S 0.0 0.0 0:02.86 ksoftirqd/1

 16 root 0 -20 0 0 0 S 0.0 0.0 0:00.00 kworker/1:+

 18 root 20 0 0 0 0 S 0.0 0.0 0:00.00 kdevtmpfs

 19 root 0 -20 0 0 0 S 0.0 0.0 0:00.00 netns

 20 root 20 0 0 0 0 S 0.0 0.0 0:03.22 khungtaskd

The top command runs continuously until you stop it, dynamically updating the information as

it changes. The top half of the screen contains statistics regarding open processes and resource

usage, and the bottom half of the screen displays the dynamic list of currently running processes

and their CPU usage. To stop or exit the top command hit the q key for quit.

Like Task Manager in Windows, this information isn’t very exciting and isn’t crucial

information for a casual user. But the information and commands will be important and useful as

you move into system administration.

Who are you?
When a user is given an account on a Linux/UNIX system there are several pieces of information

about that person that are created. The who, whoami and finger commands can be used to

find out information about yourself like your username (in case you forgot), where you logged in

from, and how long you’ve been on the system. The following show example output from these

commands:

% whoami

bdover

% w

 15:01:04 up 182 days, 23:56, 1 user, load average: 0.00, 0.01, 0.05

USER TTY FROM LOGIN@ IDLE JCPU PCPU WHAT

bdover pts/0 077-099-168-216 06:44 0.00s 0.07s 0.00s w

% who

bdover pts/0 2021-08-17 06:44 (077-099-168-216.res.charter.com)

% finger

Login Name Tty Login Time Office Phone Host

bdover Ben pts/0 Aug 17 06:44 The Shire 888-8888 077.099.168.216

Some of these commands can also be used to find out information about other users on the

system. This information and these commands are a little fun, but once again this isn’t crucial to

know and you don’t need to memorize any of these commands.

Fun with the finger command

In the early days of UNIX and the Internet, before the web, users wanted a way to share their

contact information, schedules, and possibly let other people know where they were at a given

time. The finger command was designed to allow you see this information for other users. By

default, the finger command will show you your finger information. If you haven’t changed it

yet, there won’t be much to see, but you will see the various categories of information that finger

will display.

You can use the finger command to find out information about other users as well. Actually,

this is what it was originally designed for, since you hopefully already know your own finger

info. To give another user the finger (yes, this is really what it’s called, LOL) type the command:

 finger user

It’s theoretically possible to finger users on other Linux/UNIX systems if you know their

usernames and the hostname. The syntax for this is: finger user@hostname. However,

this usage of finger causes some security issues, so most Linux/UNIX administrators have

disabled remote finger access.

Changing your finger information

You can change your own finger information by using the chfn command. It will prompt you

for your password, then prompt you for your contact information.

% chfn

Changing finger information for bdover.

Name [Bilbo Baggins]: Muad'Dib

Office [The Shire]: Arrakis

Office Phone [888]: 999-888-7777

Home Phone [#7]: 222-111-0000

Password:

You can also change your plan by creating or editing a file named .plan that must be located in

your home directory. (You will learn how edit your .plan file by moving files from your PC to

your Linux/UNIX account in the next section, and how to use the editor later in the class.)

Getting Help

There are a couple of ways for getting help on Linux/UNIX systems. Of course, the most

common method of getting help is to use the Internet. But there may be times when you need

help and don’t have Internet access. In those cases, you should know how to use some of the help

systems built into Linux/UNIX.

The first method is to use a series of files called the man pages that contain information about all

the various commands, programming libraries and data files on the system. The Linux/UNIX

documentation used to come in a series of manuals, and the online man pages are simply the

electronic versions of the hardcopy manual pages. The man pages are in a special format, not

plain text, so you need to use a special utility program, called man, to look at them. The

command name isn’t meant to be sexist, it’s just an abbreviation of manual.

To use the man command type man followed by the name of the command you want help with.

For example, to see the man pages for the ls command type man ls

The man command will display the manual page(s) for the specified command (or specified

item). It displays the information a page (screen) at a time, along with a prompt. The “:” at the

lower left of the screen represents the prompt for the man command. The man commands make

it possible to do things like display the next page, go back, search for a string, etc.

At a minimum you need to know that pressing <space> (the space bar) will display the next

man page, and to quit from man, you have to type q. To see a list of all the man commands you

would think that you should type:

man man

At least this is what I always thought. However, as it turns out the man page for the man

command doesn’t show the different keys to hit; it shows you other information, but not the

command keys. It also turns out that the man command uses a Linux/UNIX utility named less

to control the scrolling and display of the man page. The less utility is similar to the more

utility, and the name is another UNIX insider pun/joke. So, to see the keys you would hit to

control the scrolling in the man utility you should type: man less

Help finding the right command with apropos

The problem with the man command is that it requires you to know the name of the command

you want to use. It’s like the problem of using the dictionary to help you spell a word. You can

only look up the spelling for a word if you already know how to spell it. So, if you know you

Figure 2-22 The output from running man ls

want to do something in Linux but don’t know the command name then man is no help. Luckily

most Linux/UNIX systems also contain a database of the available commands and keywords

associated with the commands. There are two commands you can use to get help from the

command database.

The first command is apropos, which will search the keywords and find any commands that

match. To use apropos you type the command name followed by a word or set of words that

describe what it is you would like to do. For example, to find commands that would edit files

type apropos edit The apropos command searches through its database and returns all

the commands that have the characters edit in them. Here’s a small sample of the results from
apropos edit

elfedit (1) Update the ELF header of ELF files.

ex (1) Vi IMproved, a programmers text editor

gex (1) Vi IMproved, a programmers text editor

grub2-editenv (1) Manage the GRUB environment block.

gview (1) Vi IMproved, a programmers text editor

Note that sometimes apropos won’t be much help. That is, some commands, such as cd, are

actually part of a larger program called the shell. You’ll learn much more about the shell later in

the course, but for now you can think of it as a program like Word. Your shell program starts

when you login, and it’s the program that handles any commands you type. If the command you

type, like cd, is built into the shell code, the shell just executes the code for that command. This

is like running Word, and then asking it to find and replace some text. Word has the code to do

this built-in and won’t have to start another program. But if the command you type, like cat, is

not built into the shell code, the shell will ask the OS to load and run the command for you. This

is like running Word, and then wanting to play a music file, in which case you’ll need to start

another program. The point of this is that if you type apropos cd the information returned

won’t be of much help, and until you get a little more Linux experience it will probably just be

confusing.

The other problem with apropos is that it does a “dumb” search of all the man pages and

returns any line from any page that contains the characters you passed to apropos. For

example, if you type apropos ls it returns dozens of lines, matching things like failsafe

or Utils. In this case what’s returned most likely won’t be helpful.

 If you give apropos more than one keyword it will find any commands that match any of the

words in your list. There is no way to make apropos match all the words in a phrase, but later

you will learn how to combine commands to make this happen. As a side note, if you use the

man command with the –k option (for keyword) it will act just like apropos.

Is this the right command? Using whatis

The second utility that uses the command database is whatis, which is like the man command

but returns a single line result instead of the entire man page. It does this by searching the

command database and then returning the single line description for the command. This can be

helpful when you think you know what a command does but may not be sure. You can use

whatis to check your memory, without having to read the entire man page. The only problem

is that just like the man command, whatis requires that you remember a valid command name

to even get started.

Here's an example showing the output from running whatis less:

% whatis less

less (1) - opposite of more

less (3pm) - perl pragma to request less of something

What Version of Linux/UNIX is running?

Another piece of information that you might want to know is which Linux distribution is being

used. You already know you’re using Linux, but do you know which distribution? Or which

version of the specific distribution? Just like with Windows, where most users don’t know or

care whether they’re running Windows Home or Windows Enterprise, the information about the

Linux distribution isn’t crucial to know as a user. But it will be important as you move into

system administration as there are some significant differences between distributions. Just in

case you want to know which specific release of Linux/UNIX is being run there is one

command, uname, and one file, /etc/issue that will display this information. There’s a

second file that may exist on some systems but is not universally available. On RedHat systems

this file is named /etc/redhat-release

Summary
In this section you learned how to do the same kind of things you might do if you went to a

friend’s house and had 10 minutes to snoop around or explore their Windows based computer,

only in this case the computer is running Linux or UNIX. Specifically you learned the following:

1. How to use the ls command to look at the files in a directory

2. How to use the cd command to change directories

3. The difference between absolute and relative paths, and how to use them

4. The general structure of the main directories in the filesystem

5. Various ways to get help with Linux commands

6. Commands for discovering what other users may be on the system, and what programs or

processes may be running.

 Review Questions

The purpose of these questions is to help you review your understanding of the material and

exercises presented in this chapter. You should look at the questions, but you do NOT need to

turn in the answers.

1. How do your commands get from the PC to the Linux server?

2. Is there a program running on the Linux server to handle your incoming network

connections?

3. Can two Linux/UNIX users have the same account name? Can two Linux/UNIX users have

the same password?

4. When you run the PuTTY program, its code/instructions are loaded into memory on a

computer. Is this computer the Windows machine you're sitting at, or the Linux computer?

5. When you log on to the Linux computer, and run a program such as passwd, where is this

program run, on the Windows machine you're sitting at, or the Linux computer?

6. What are some of the features of a strong password?

7. On a Linux system, are there any programs running besides user programs?

8. Do all programs have to be run by someone? That is, does a user need to start every program

running on a computer?

9. Will the files and directories on every Linux/UNIX system be exactly the same? Will they be

similar?

10. Is it better to use absolute paths or relative paths?

11. What character is used to start all absolute paths?

12. How to move up one directory? That is, how do you move to the parent directory?

13. On Linux systems the main OS file is named Vmlinuz-something, and it’s typically located

in the /boot directory. What is the specific name of this file on the CBC Linux server? How

big is it? Do you think this file contain the entire OS? Can you name the Windows

equivalent of this file?

14. Linux/UNIX supports multiple disks and/or partitions. How does Linux/UNIX identify each

partition, as a drive letter, or as a subdirectory? Is this better or worse than drive letters?

What are some advantages and disadvantages?

15. How do you know if a subdirectory is on a different disk or partition? Does it matter?

16. Can you see what other users are doing on a Linux system? Can they see what you are doing?

Can you find out any personal information about other users?

17. What are some useful options for the ls command? How do you find a complete list of

options?

18. Can you use cd or ls on every directory? Why or why not?

19. Use ls -al on your home directory. What files do you see? What are . and .. ?

20. Can you identify the other files in your home directory? Why don't they show up under ls?

21. How do you get help on Linux/UNIX commands?

