
1

4 Layer 3 Network Layer and the
Internet Protocol (IP)

In this section you’re going to learn about the Network Layer of the OSI model, and the Internet Protocol

(IP). The Network Layer of the OSI model is the layer that’s responsible for end-to-end delivery of

network data, as opposed to the point-to-point delivery that happens in the Data Link Layer. Almost all

networks, including the Internet use a protocol called the Internet Protocol or IP at this layer. The

Internet Protocol defines several things, including IP addresses and the rules for packing data from the

upper layers into packets. There’s quite bit to IP, so we’ll be breaking this section up into the following:

1. History of IP

2. IP Address Basics

3. IP Packets

4. Network Mask (Netmask) Basics

5. Subnetting and Netmask Basics - Delivery of IP Packets

6. Classless Inter-Domain Routing (CIDR)

7. Default Router (Gateway)

8. DNS Basics

9. IP Configuration Basics

10. IP Troubleshooting

11. IP Packet Details

12. IP Address Assignment

13. IP Address Blocks/Classes

14. Non-Routable IP Addresses

15. Subnetting – Advanced

16. DHCP

17. IPV6

2

Objectives

At the end of this section you will be able to:

1. Define what IP addresses are, how they are used, and differentiate them from MAC addresses.

2. Given two IP addresses and a netmask, determine whether the IP addresses are on the same or

different network segments.

3. Describe the role of the default router, and why it’s IP address must be part of the TCP/IP

configuration.

4. Given a netmask, determine the number of networks and number of hosts.

5. Identify the sections of an IP packet.

6. List the IP address classes.

7. Describe how non-routable IP addresses function.

8. Describe how non-routable IP addresses freed up most of the IPv4 address space.

9. Describe the purpose of DNS in the network stack.

10. Configure TCP/IP settings on a Windows based computer.

11. Use wireshark to analyze IP information.

12. Troubleshoot problems with TCP/IP configuration.

Resources

There are several resources that you should use to learn this material.

1. These Lecture Notes

2. Videos linked in Canvas.

3. Labsim Section 4

If you feel like any of the concepts presented in this section are not clear or need additional resources,

you can always do your own research on the Internet or contact the instructor for help.

3

Lecture Notes

Introduction

In this section you’re going to learn about the Network Layer and the Internet Protocol (IP) which is the

main protocol used at this layer. You’ll start with a quick history lesson, and then learn about the

Network Layer and IP. Learning about how everything works in the Network Layer can be a little tricky

because there are lots of interrelated parts, and understanding any single part requires learning about

the other parts first. Rather than trying to learn all the components at the same time we’re going to take

cover everything three times. The first time through you’ll get an overview of the components and how

they work together. Next, we’ll swing back around cover each separately, providing you with the basics

of each component. And finally, we’ll cover each component one more time, but this time covering any

important details.

History of IP

Let’s start with a quick look backwards at the history of the Internet Protocol (IP). You don’t really need

to know the names and dates, but learning about the history of the IP is important because it will help

you understand how it became the main protocol used on the Internet. You’ll also learn about the IETF

which is the organization in charge of IP. You’ll learn about how the IETF came to be in charge of

maintaining the standards for all protocols used on the Internet, including IP.

In the early days of computer networking, there were several competing protocols for transmitting data

over networks. However, the development of the IP proved to be a significant milestone in the history of

networking, as it provided a standard way to move data from end-to-end in a network. Unlike protocols

that relied on MAC addresses to move data from point-to-point on single network segments, IP allowed

data to be transmitted across multiple networks, enabling the creation of the global Internet we know

today.

4

The Internet Protocol was developed in the early 1970s by a team of researchers led by Vinton Cerf and

Bob Kahn1,2,3. At the time, there was a need for a new networking protocol that could connect different

computer networks together, as the existing protocols were not suitable for this purpose. Cerf and

Kahn's work on IP was part of a larger project known as the ARPANET, which was a research project

funded by the US Department of Defense. The ARPANET was the precursor to the modern Internet, and

the development of IP was a critical step in the creation of the Internet as we know it today.

The IP protocol defines two main items, the format for network packets and a system of addresses

called IP Addresses. You’ll learn the details about both these items later in this section, but for now

here’s a quick overview. The IP network packet contains two parts: the header and the data. The header

contains information about the source and destination of the packet, as well as other information. The

data contains the actual information being transmitted, such as an email message or a web page. The

other key component defined by the IP protocol is the system of IP addresses. An IP address is a unique

1 Cerf, V. G., & Kahn, R. E. (1974). A protocol for packet network intercommunication. IEEE Transactions on
Communications, 22(5), 637-648
2 Cerf, V. G., & Kahn, R. E. (1978). The current state of the art of packet switching: An overview. IEEE
Communications Magazine, 16(2), 129-138
3 Internet Society. (n.d.). Brief history of the Internet. Retrieved from
https://www.internetsociety.org/internet/history-internet/brief-history-internet/

Bob Kahn and Vinton Cerf, developers of the Internet Protocol. From

https://northernvirginiamag.com/culture/culture-features/2021/07/23/meet-mclean-residents-bob-

kahn-and-vint-cerf-they-invented-the-internet/

5

identifier assigned to every device connected to the Internet and they are used to move network data

from end-to-end, as opposed to MAC addresses which are used to move data from point-to-point. IP

addresses are a 32-bit number that is usually represented in a dotted decimal notation, such as

192.168.0.1.

IP was designed to be a simple, lightweight protocol that could route packets of data across different

networks. However, it had some limitations, such as a lack of reliability and no built-in error checking. To

address these issues, Cerf and Kahn developed the Transmission Control Protocol (TCP), which was

added to IP to create the TCP/IP protocol suite. TCP/IP was developed in the 1970s and adopted as the

protocol standard for ARPANET (the predecessor to the Internet) in 1983. The development of TCP/IP

was a significant breakthrough in the history of computer networking, as it allowed different computer

networks to communicate with each other using a common set of protocols. Today, TCP/IP is the

foundation of the Internet, and it is used by virtually every device that is connected to the Internet.

Sadly, unlike other tech moguls like Gates, Zuckerberg, and Musk, most people won’t recognize the

names Cerf and Kahn even though their work made today’s Internet possible. They are highly recognized

and respected by the tech industry and were awarded the National Medal of Technology and Innovation

in 1997.

IETF – Who’s (not) the Boss
In this section you’ll learn about the IETF, which is the group in charge of Internet standards and about

the RFCs or Request For Comment documents which are used to publish the technical details behind the

standards. This information is being presented because in any career field it’s important to know who’s

in charge of any laws or standards governing the work.

While Cerf and Kahn were the original developers of the Internet Protocol (IP), they eventually turned

the responsibility for managing the protocol to others in the ARPA project. There were two groups that

had control over different aspects of IP, the Internet Configuration Control Board (ICCB)4 and the

Defense Data Network (DDN) Network Information Center (NIC). The ICCB had been responsible for

managing the early development of the Internet, while the DDN NIC had been responsible for managing

4 https://itlaw.fandom.com/wiki/Internet_Configuration_Control_Board

https://itlaw.fandom.com/wiki/Internet_Configuration_Control_Board

6

ARPANET, the defense network that the Internet had grown out of. The Internet Engineering Task Force

(IETF) was created in 1986 as a result of the merging of two groups:

The IETF was tasked with developing and promoting the technical standards and protocols for the

Internet. The IETF was initially composed of a small group of researchers and engineers who were

working on the development of the Internet, but it has since grown into a large, international

organization with thousands of members from around the world. Today the IETF is a standards

organization that is open to anyone who wants to participate. The IETF develops technical standards for

the Internet through a process of consensus-building and publishes the resulting standards in a series of

documents known as Request for Comments (RFCs).

An important point, a critical point to understand, is that the IETF is not "in charge" of Internet technical

standards in the traditional sense. Rather, it is a community-driven organization that operates through a

process of open, collaborative discussion and consensus building. The IETF doesn’t have any legal

authority to enforce its standards or protocols, but its work is widely respected and has been adopted

by industry and governments around the world. The only way for the Internet to work is for everyone

that uses it to cooperate and follow the IETF’s suggested standards. This means that anyone that

manages a network segment connected to the Internet, and all the organizations that route packets

between these network segments must agree to cooperate. If you take a minute to think about this you

might be pleasantly surprised that everyone does cooperate and that the Internet does work, especially

in today’s highly polarized social climate where it seems that no one wants to cooperate for the greater

good.

In any case, the IETF is responsible for developing and maintaining many of the protocols that are used

on the Internet, including IP. The IETF publishes the standards in documents called RFCs, which stands

for Request for Comments. RFCs are technical documents that contain information on how to

implement various network protocols, network technologies, and network standards that make up the

Internet. The RFCs are not meant for general use or explanation; instead, they serve as a blueprint for

building and implementing various network technologies. They include detailed technical specifications,

diagrams, and examples to help developers create and maintain interoperable systems. Some of the

most well-known RFCs include:

7

RFC 791 - Internet Protocol (IP)

RFC 822 - Standard for the Format of ARPA Internet Text Messages (Email)

RFC 1034 and 1035 - Domain Name System (DNS)

RFC 1945 - Hypertext Transfer Protocol (HTTP/1.0)

RFC 8446 - Transport Layer Security (TLS 1.3)

These RFCs are just a few examples of the many standards and protocols that make up the Internet's

infrastructure. You can find a complete list on several Internet sites, but the official repository run by the

IETF can be found at https://www.rfc-editor.org/. While the IETF has serious responsibilities, they also

have a well-developed although slightly geeky, sense of humor. There are several RFCs that are meant to

be jokes and can be fun to read.5

One thing about the RFCs that many people find curious is the name “Request for Comments”, instead

of something more authoritative like “Standards” or “Technical Specifications and Requirements”. The

story behind the name "RFC" comes from the early days of the ARPANET, the precursor to the Internet.

In 1969, Steve Crocker wrote the first RFC, which was a memo describing how to implement a simple

host-to-host protocol for sending and receiving messages on the ARPANET. According to Dr. Crocker, the

term "Request for Comments" was originally used as a bit of a joke. He and his colleagues were

concerned that calling their publications "standards" might come across as overly presumptuous or

arrogant, given that the technology they were working on was still very much in its infancy.

As Dr. Crocker recounted in a 2012 interview with the Internet Society6:

"The first RFC was simply an internal note, but when we decided to publish it, we needed a name. I

personally was very uncomfortable with the term 'standard' because we were just a bunch of graduate

students, and it seemed presumptuous to call what we were doing a 'standard.' I just suggested

'Request for Comments' partly as a joke, but partly also to say, 'Look, we're just putting this out there.

We're not claiming it's perfect. We're not claiming it's a standard. We're asking for feedback.'"

5 https://tangentsoft.com/rfcs/humorous.html
6 https://www.internetsociety.org/wp-content/uploads/2017/09/rfc-retrospective.pdf

https://www.rfc-editor.org/

8

The term "Request for Comments" caught on and has since become synonymous with the process by

which new Internet standards are developed and refined. Today, the RFC series includes over 9,000

documents, and remains an essential part of the Internet's infrastructure.

When the Internet was first starting the IETF developed a few “rules” that any network had to follow to

connect to the Internet. If you were a network administrator that wanted to connect your network to

the Internet, you had to promise to follow the IETF rules which include the following:

1. The Internet Protocol must be used.

2. Every device on the network must have a unique IP address, which for smaller networks can be

obtained from an ISP, and for larger networks can be obtained from the official Internet registry,

the Internet Assigned Numbers Authority (IANA), or a regional Internet registry (RIR). You’ll

learn the details about obtaining IP Addresses later in this section.

3. The Domain Name System (DNS), which is used to translate human-readable domain names

such as google.com into IP addresses, must be used. To connect a network to the Internet, the

network must have at least one DNS server that is able to resolve their DNS names into IP

addresses. registry (RIR).

4. To connect a network to the Internet, the network must have a routing protocol in place that

allows it to exchange routing information with other networks and routers on the Internet.

You’ll learn the details about routing later.

The main rule is that you must use IP as the network protocol. This isn’t a rule in the sense that it’s a

legal standard, it’s just that you must use the Internet Protocol get your network data through the

Internet routers.

Once again, meeting these requirements is essential for ensuring that the network can communicate

with other networks and devices on the Internet. Connecting a network to the Internet without meeting

the necessary requirements can have various consequences, the main one being that devices on your

network will be unable to share information with other devices on the Internet. If your network doesn’t

9

follow the IETF standards and starts causing problems with other networks, the router(s) connecting

your network to the Internet will shut down your connection. Unlike the rest of human society, the

Internet realizes that the only way to work is to work together and cooperate. For this reason, all

countries use the same set of IP numbers and recognize the Internet Assigned Numbers Authority

(IANA) as the organization responsible for allocating IP addresses and managing the global IP address

space. While some countries may have their own regulations and policies related to the use of IP

addresses and the management of their own national networks, the underlying technical standards and

protocols used for communication on the Internet are global and universal, they’re not limited to the

United States.

If a country, such as China, were to decide to ignore the Internet Assigned Numbers Authority (IANA)

and set up their own set of IP addresses, it would create a parallel system that would not be compatible

with the existing global Internet and devices and networks within that country would not be able to

communicate with devices and networks on the global Internet. Such a move could have significant

geopolitical and economic consequences, as it would likely lead to fragmentation and isolation of the

Internet and prevent businesses and individuals from engaging in international commerce, research, and

communication. So, even though other countries may have the technical capability to create their own

set of IP addresses, they don’t because doing so would likely have significant negative consequences and

would not be compatible with the global nature of the Internet.

While you don’t need to memorize any of the history of the Internet Protocol, there are a few things you

should take away from this section. The first is the concept of how the Internet and the groups that

control IP and the other protocols used on the Internet protocols came about. That is, they weren’t

formed by a company, and they weren’t part of an international effort like the ISO. Instead, the Internet

grew out of a US government research project. But even though the Internet started in the US it’s now a

global network that only maintains a global span because of a cooperative effort among all parties that

use it.

The second point is a technical point, and this is that the Internet Protocol defines two main items, the

format for network packets and a system of addresses called IP Addresses. So, let’s quit talking about

IP’s history and talking about what it is in a vague sense, and start learning about IP Addresses and IP

network packets.

10

Overview of the Network Layer Process and Components

Component Overview
Now let’s start learning about what actually happens in the Network Layer, and the protocols and

components used in the process. In this section you’re going to get the 40,000 foot view of what

happens in the Network Layer. The main thing to note is that the Network Layer is responsible for

transmitting data between networks. That is, the Data Link Layer, ethernet frames, and MAC addresses

can be used to send network data between devices on the same network segment, they aren’t able to

send data between devices on different networks. An analogy for this would be with snail mail, where

your local postal carrier can deliver mail between houses and buildings in your town, but they can’t

deliver mail to houses and buildings in different counties or different states. Getting the mail to a

different town requires something like the Internet Protocol or IP.

The main component used in the Network Layer is a protocol called the Internet Protocol, which defines

three main things. It defines a format for the packets, called IP packets, that will be used to hold the

data being transferred, a format for network addresses which are called IP addresses, and it defines

something called netmask which is used to interpret how much of each IP address describes a network

and how much of the address describes a specific device on the network.

The IP packet is much like an ethernet frame, in the sense that it’s used to send network data and has a

header section that contains things like source and destination addresses, and a data section. But when

you look at the specifics IP packets and ethernet frames there are some obvious differences. One of the

big differences is that IP packets will use IP addresses instead of MAC addresses.

IP addresses are made of 4 numbers, called octets, with dots or periods separating the numbers. Each

octet number can range from 0 to 255, although the numbers 0 and 255 serve special purposes. An

example IP address would be 12.234.1.98. Each device on a network connected to the Internet must

have a unique IP address, but unlike MAC addresses which are assigned by vendor, the IP addresses are

assigned to networks, so all the devices on the same network segment will have similar addresses.

Each IP address actually contains two pieces of information, the network number, and a unique number

assigned to each host on the network. This is kind of like MAC addresses, where the first 6 numbers

11

describe the vendor and the last 6 describe the specific device, but with two big differences. The first

difference, as you just learned, is that the first part of the IP address describes a network instead of a

vendor, and the second difference is that the portion of each IP address that describes the network can

vary, and you can’t tell how many of the octets describe the network without another piece of

information. The network portion of an IP address may be the first octet, it may be the first two octets,

or it may be the first three octets. Or in advanced cases, the network part of the IP address may be a

fraction of one of the octets. The only way to know how to divide an IP address into the network portion

and the host portion is by using a third piece of information called the netmask.

Another network component used by IP and the Network Layer is a router. A router is a networking

device that forwards data packets between different computer networks. Hopefully you remember that

switches and hubs connect devices to create a single network segment, while routers connect multiple

networks or network segments. On most networks, there’s a single router that connects the network to

the Internet or in large organizations there will be a single router that connects a network segment to

the organizations larger network. This is like in your home, where you have a single router that connects

your home network to the Internet. Since the Network Layer is tasked with moving network data

between networks, one of the key components in the process is this router, as this is the device that will

handle any network packets that are being sent to devices on other networks. Whenever you configure

the IP settings on a computer, you must provide the IP address of this router which is called default

router. You should also note that in Microsoft terminology this device is called the default gateway,

which isn’t quite technically correct as far as network terminology goes, but that’s what Microsoft calls

it.

The last main component used by the Network Layer is the Domain Name System or DNS. This is the

system that converts or resolves names like google.com to IP addresses. DNS is used because humans

are much better at remembering names than we are at remembering long strings of numbers. You can

think of DNS as being like a phone book or the contact list in your phone, but instead of converting

human names to phone numbers, DNS resolves names to IP addresses. Any network that connects to

the Internet needs to have access to two DNS servers that it can use to resolve names to IP addresses,

and any computer connected to a network needs to be configured with the IP addresses of these two

DNS servers.

12

Here's a summary of the protocols, components, and services used by the Network Layer:

1. IP Protocol – defines the format for IP packets.

2. IP Addresses – used to identify networks, and hosts on those networks.

3. Netmask – used to determine how to divide an IP address into the network portion and the host

portion.

4. Default Gateway – IP address of the router used to transmit packets to other networks.

5. DNS Servers – Resolve host names to IP addresses.

Any computer or device that wants to communicate on an IP network, including the Internet, must have

all these five things installed or configured. That is, the device must have the IP software installed, it

must be assigned an IP address, it must have a netmask configured, it must have the addresses of two

functioning DNS servers, and it must have the IP address of a default router (gateway). You’ll learn how

the IP address, netmask, default router, and DNS servers are configured later, but for now you just need

to know that they must be configured on any device connected to a network using the Internet Protocol.

The following shows the network configuration information for a Windows based computer. You can see

that the IP address and subnet mask have been set, and the IP addresses for the default gateway and

DNS server have been configured. It also shows the MAC address, which has been read from the

computer’s NIC.

 Physical Address: A0-02-A5-C6-C8-93

 IPv4 Address: 192.168.1.98

 Subnet Mask: 255.255.255.0

 Default Gateway: 192.168.1.1

 DNS Servers: 192.168.1.10

13

Process Overview
Now let’s look at an overview of the process used by the Network layer, and how it uses the protocols,

components, and services to package and deliver data across the network. As we go through this

process remember that the network stack on the device will already know five things:

1. Its own IP address.

2. The netmask.

3. The IP address of two DNS servers.

4. The IP address of the network’s default router/gateway.

5. Its own MAC address.

The first four items will be known because they have been set in the device’s network configuration.

And the MAC address will be known because it can be read from the firmware on the network interface

card.

With that in mind, here’s an overview of the process. Keep in mind that this is an overview and it’s

meant to show you how the various components work together to build and deliver network packets,

and that the details of each step will be explained later.

1. The Network Layer receives a request to send data from the upper layers in the OSI network

stack. This request includes the data to send, and the DNS name of the host to send the data to.

2. The Network Layer will build an IP Packet by:

a. Placing the data in the data portion of the IP Packet

b. Building the IP packet header, placing the source and destination IP addresses in the

correct locations.

i. The source IP will be the IP address of this computer, which can be read from

the computer’s network configuration.

ii. The destination IP address will be the IP address associated with the DNS name

of the computer we’re sending the data to. To find this, the Network Layer must

put the current IP packet on hold and create a new IP packet containing a DNS

request.

14

iii. This DNS request packet will be sent to the DNS server using the IP address from

the computer’s network configuration.

iv. The DNS system will respond with the IP address associated with the DNS name.

v. The original IP packet can now be completed by placing the IP address

associated with the DNS name in the Destination IP Address field in the packet

header.

3. The next step is to decide where to send the IP packet, either directly to recipient computer, or

to a different device in the delivery chain. That is, the network stack needs to know if the

recipient IP address is on the same network segment or not. If it’s on the same network

segment it can send the packet directly, but if it’s on a different network segment it will have to

send the packet to the default router/gateway. This decision is made by using the netmask to

determine which numbers in each IP address describe the network, and then comparing the

network numbers of the Source IP Address and the Destination IP Address. The steps in this

process are:

a. Read the netmask from the computer’s network configuration. The numbers in the

netmask will typically be 255s or 0s. Any of the four positions that contains a 255 will be

part of the network number, and any position that contains a 0 will be a host number.

b. Compare the network portions of the Source and Destination IP addresses. If they are

the same, the destination computer is on the same network, and the packet can be sent

to it directly. If the network portion of the numbers are different, then the destination

computer is on a different network and the packet must be sent to the default router

for delivery.

In our example the network portion of the source IP address is: 192.168.2 and the

network portion of the destination address is: 142.250.217. These two network

numbers are different which means the IP packet needs to be sent to the default router.

4. After the decision on where to send the packet has been made, the IP Packet will be handed

down to the Data Link Layer which will build an ethernet frame by:

15

a. Placing the entire IP packet in the Data section of the frame.

b. Placing the MAC address of this computer in the source MAC portion of the ethernet

frame header.

c. Placing the MAC address of the next computer in the delivery chain in the destination

MAC. In this case, where the IP packet is being sent to google.com, the ethernet frame

will be sent to the default router/gateway, so the default router’s MAC address will be

used as the destination MAC.

d. The Data Link Layer checks its ARP cache for the MAC address of the default router.

Remember that the ARP cache stores the MAC addresses associated with specific IP

addresses, and the Data Link Layer knows the IP address of the default router since it

must be set as part of the network configuration. If the MAC address of the default

router isn’t known, the Data Link Layer will use ARP to discover it. As you learned in the

Data Link Layer, the ARP packet will be sent as an ethernet broadcast, with the default

router’s IP as the destination IP.

5. After the ethernet frame is built, it’s handed down to the physical layer which converts it to the

proper signals and transmits the signals across the network media.

 Internet Address Physical Address Type

 192.168.1.1 3c-37-86-23-d0-c2 dynamic

 192.168.1.3 00-15-99-11-41-49 dynamic

 192.168.1.6 90-a8-22-93-99-6c dynamic

 224.0.0.22 01-00-5e-00-00-16 static

 224.0.0.251 01-00-5e-00-00-fb static

16

Ok … that’s the overview, and as you can see there’s a lot going on. Some of the steps in the process,

like using the netmask or what DNS does may be a bit fuzzy now, but as you keep going and learn details

of the various protocols and components, everything should start to make more sense.

IP Address Basics

In this section you’ll learn the basics of IP addresses. IP addresses are at the heart of the Internet

Protocol as they’re used to uniquely identify a computer or device on the network and allow end-to-end

delivery. IP addresses might seem just like MAC addresses as they’re both unique addresses used to

identify devices on a network, but there are a couple of significant differences.

The first difference is that MAC addresses are burned onto a network card and cannot be changed. (Ok,

this isn’t technically correct, as the MAC address is burned onto an EEPROM that can be reprogrammed

to change the MAC address, but this isn’t a simple process.) IP addresses are configured for each

computer and can be easily changed. You can think of this as the relationship between you and your

phone number. You are like the MAC address, it doesn’t matter where you go or what you do, you will

always be glorious you. Your phone number is like an IP address, as it can always be changed, it’s just a

number that people use to call you, but it’s not you. Of course, it might be painful for your friends if you

change your number, but the point is it can be changed, while no matter what phone number you have

you will be the same person.

You should note that just because IP addresses can be changed, it doesn’t mean they are frequently

changed. if you connect your computer to you home network and never move it, it will keep one IP

address. But if you connect your computer to a different network, you will be assigned a new IP

address. For example, if you take your computer to school or on the road and stay in a hotel and

connect to a different network, it will get a different IP address. You’ll learn the details of how the IP

addresses are assigned when you connect to a different network later.

The second difference between IP addresses and MAC addresses is that IP addresses are used for end-

to-end delivery, while MAC addresses are used for point-to-point delivery. Any computer connected to a

17

network will have both a MAC address and an IP address. The MAC address is used to transmit data

from point-to-point, while the IP address is used to transmit data from end-to-end.

Let’s look at an example of what this means, using the following figure. Say that computer A wants to

send some data across the network to computer F. In this case computer A and computer F are on

different networks, with a router connecting the two network segments. When we say end-to-end, we

mean from computer A to computer F. But for the packets to get from end-to-end they need to go

through the router, which means there will be a few point-to-point hops. The first point-to-point hop

will be from computer A to the router, and the second point-to-point hop will be from the router to

computer F. You’ll learn the details of how this happens later, the main point to take away is that IP

addresses are used for getting network data from end-to-end, while MAC addresses are used to move

network data from point-to-point.

IP Address Versions
There are two versions of IP addresses, called IPv4 and IPv6. The IPv4 addresses were the original

addresses and were originally just called IP addresses. As you’ll learn there are only so many IPv4

addresses, over ~4.2 billion, which is a lot, but not enough if every computer and device connected to

the Internet needs one. When it appeared that the Internet would need more addresses than IPv4 could

provide work was started on IPv6, which mainly increased the address space to ~3.4×1038 but also made

a few other improvements. Once IPv6 was released, we started using IPv4 to refer to the old version.

But if you just mention IP addresses in most cases you can assume that this means IPv4, and if IPv6 is

being used it will be called out by name.

18

Most of the rest of the discussion in this section will be based on IPv4, but once again I’m just going to

call it IP. While IPv6 is being used in some situations, most organizations are still using IPv4. And the

processes used by IPv4 will still be applicable in IPv6, so I think it will be simpler and less confusing to

concentrate on IPv4. You will learn about IPv6 at the very end of this section, and that will be the only

time, besides now, that we use IPv6 and not IPv4.

If you’re the curious type and want to know why the only two versions are 4 and 6, you can look the

explanation up on the Internet or read https://www.ipxo.com/blog/what-happened-to-ipv5/ If this site

no longer exists you can do your own search for something like IPv5.

Anatomy of an IP Address.
Now it’s time to learn what an IP address looks like, and how this information is used. IP addresses are 4

part numbers, with each of the numbers separated by a dot or period. Each individual number can range

from 0-255, although you never see a 0 in the first number, and 255 has a special meaning so it isn’t

used in a normal device address.

Here are a few examples of valid and invalid IP addresses. See if you can find the problems with the

invalid examples.

Valid

182.34.29.100

192.168.1.1

12.13.14.15

254.1.31.254

Invalid

https://www.ipxo.com/blog/what-happened-to-ipv5/

19

182.34.29

192.168.1.1.2

12.13.14.355

255.1.31.254

182.3A.29.17

The reason the numbers range from 0-255 is because they’re actually 8-bit binary numbers that range

from 0000 0000 to 1111 1111. But because binary is so awkward for humans to deal with, we convert

the numbers to decimal, which results in the 0-255 range. To work with IP addresses, you will need to

be able to convert numbers between binary or base 2, and decimal or base 10. If you don’t know how to

do this, you can use the video tutorials I’ve created or find other tutorials on the Internet. You can also

make use of a calculator, which will do the conversion for you, but if you’re planning on a career in cyber

security or in any aspect of computer science, you’ll find that this is a necessary skill, so I suggest you

take the time to learn how to work in binary on your own without the use of a calculator.

Each number is also referred to as an octet, since it’s 8 bits. Using this terminology, we would say that

an IP address is made up of 4 octets. You’ll often hear portions of an IP address referred to as the first

octet, which would be the number before the first dot, or the first two octets which would the first two

numbers.

An IP address is really 4 8-bit binary numbers, but they’re easier for humans to read and understand

if we convert the binary numbers to decimal numbers.

20

Sidebar on Counting in Binary

If you want to earn your Junior Geek badge one thing you need to be able to do is use binary or the

base 2 number system. Before we jump into binary, we’ll do a quick review of base 10 or the decimal

number system you’re already familiar with to provide you with a perspective.

In base 10 the places in a number are assigned values. That is, the right most numeral is in what is

referred to as the 1’s place. Moving left, the next numeral is in what’s referred to as the 10’s place,

followed by the 100’s place, followed by the 1000’s place, etc. Each place value is calculated by

raising the number base, in this case 10, to a power starting with 0 on the right and increasing the

power by 1 for each position as you move left. That is, the value of the first place is 100, the value of

the second place (moving left) is 101, the value of the third place is 102, and the value of the fourth

place is 103.

_______________ _______________ _______________ _______________

103 102 101 100

1000’s place 100’s place 10’s place 1’s place

Remember that any number to the 0th power is 1, and any number to the 1st power is itself.

Calculating the total value of a number is done by multiplying the numeral in each place by the place

value, and then summing the result of all the multiplications. For example, if we had the number

4378 the total value would be:

(4x1000) + (3x100) + (7x10) + (8x1)

______4_______ _______3_______ _______7_______ _______8_______

103 102 101 100

1000’s place 100’s place 10’s place 1’s place

21

Sidebar on Counting in Binary (Continued)

The point of this isn’t to tell you what 4378 is. I know you know what it is, even without calculating

(4x1000) + (3x100) + (7x10) + (8x1). We can all pretty much look at numbers in base 10 and tell

exactly what they are. The point of this to remind you how number systems work, as binary or base

2 works exactly the same way with a few differences.

In binary or base 2 there are only two numerals, 0 and 1. This makes binary very useful when

working with electronic devices such as computers as 0 can be used to represent no voltage or a

switch that's turned off, and 1 can be used to represent a voltage or a switch that's turned on.

The process for counting in binary is best demonstrated by repeating the process we used for

figuring out the place values for decimal numbers, except in this case each place is going to be a

power of 2 instead of a power of 10. The following diagram shows the values of each place in a 4-

digit binary number. Once again remember that any number to the 0th power is 1 and number to

the first power is itself. After that you can find the value of each place by multiplying the value to

the right by 2.

_______________ _______________ _______________ _______________

23 22 21 20

8’s place 4’s place 2’s place 1’s place

Counting in binary is pretty simple, it just gets cumbersome quickly since there are only two

numerals. The first number is 0 followed by, just like in decimal. When we get to 2 the binary

equivalent is 102. This is because we've run out of numerals, and just like in decimal when we hit 9,

the next thing to do is to add a 1 to the next place and set the values in all the other places to 0. In

decimal adding 1 to 9 gives 10, or adding 1 to 999 gives 1000. In binary adding 1 to 1 results in 10

and adding 1 to 111 results in 1000. The following shows the decimal numbers from 0 to 15 and

their binary equivalents.

22

Sidebar on Counting in Binary (Continued)

Decimal Binary
0 0 0 0 0

1 0 0 0 1

2 0 0 1 0

3 0 0 1 1

4 0 1 0 0

5 0 1 0 1

6 0 1 1 0

7 0 1 1 1

8 1 0 0 0

9 1 0 0 1

10 1 0 1 0

11 1 0 1 1

12 1 1 0 0

13 1 1 0 1

14 1 1 1 0

15 1 1 1 1

Converting between binary and decimal is also done using the same general process used for

decimal numbers. That is, first multiply the number in each place by its place value, and then sum

the results of all the multiplications. For example, 01102 would be (0x8) + (1x4) + (1x2) + (0x1) = 610.

_______0_______ _______1_______ _______1_______ _______0_______

23 22 21 20

8’s place 4’s place 2’s place 1’s place

Since IP addresses contain 8 bits in each place, you’ll need to have 8 places, with the left most place

having the value of 27 or 128 and the right most having the value 20 or 1. The following shows all

the place values for an 8-bit number.

128 64 32 16 8 4 2 1

27 26 25 24 23 22 21 20

23

How to view a device’s IP address
Now let’s show you how to view a device’s IP address. Every device connected to an IP based network

needs to have an IP address. And, since the Internet is an IP based network, any device connected to the

Internet will have an address, even your phone or home computer will have one if they’re connected to

the Internet through your home network.

I’ll show you how to view the IP address on a Windows based computer, a Linux computer, and an

Android phone, since I have those types of devices.

Windows: On a Windows computer the ipconfig command is used to display network settings,

including the IP address. To run the ipconfig command, follow this process:

1. Start the Command Prompt application by going to the Windows start bar (or search area) in the

lower left, and type cmd.

2. Windows will display the Command Prompt app. Click on this to open a command window.

3. Place the cursor in the Command Prompt window and type ipconfig. If you get more than one

window’s worth of data type ipconfig | more. The | character is typically located above the

<enter> key. This will display something that looks like the following:

4. The IP address for the computer will be displayed in the IPv4 Address field. In this figure the IP

address is 10.90.98.162

24

Linux: On a Linux computer the ip a command is used to display network settings. To run the ip a

command, follow this process:

1. Get to the Linux command line, by either logging in to an account that starts with the command

line, or logging in to an account that uses a GUI and then starting a Command Window.

2. Type the ip a command.

3. The IP address for the computer will be displayed under the eth0 interface, as the first part of

the inet field. In this figure the IP address is 192.168.34.19

Displaying the IP address on a computer running Linux.

25

Android: This is another process you don’t need to know,

but I thought I’d include it in case you’re curious. To see the

IP address on an Android phone, follow these steps:

1. First, ensure the phone is connected to a network.

2. Go to Settings / Connections / Wi-Fi

3. Select the Gear icon by the Current Network

4. Select View More at the bottom of the screen.

5. Scroll down until you see the IP address.

Apple Devices: If you have an Apple Mac computer the process is very similar to the Linux computer

since the MacOS is a version of Linux. If you have an Apple phone, I feel sorry for you, just kidding but

not really, you can find tutorials on the Internet that will show you how to find the IP assigned to your

phone. Just remember, your portable devices will only have an IP address if they’re connected to a

network.

Ok, that’s it for the basics of IP addresses. You’ll learn more about how they’re used and how they’re

assigned a little later in this section.

Special IP Addresses

In this section you’re going to learn about some special IP addresses. These include a few groups of IP

addresses that are never assigned to individual devices as they are reserved for special functions. These

include things called the loopback address, broadcast addresses, and multi-cast addresses. You’ll also be

introduced to blocks of IP addresses called private or non-routable addresses, and then learn the details

of how they are used later in this chapter.

The loopback address is used to allow a device to send data to itself, essentially looping the data back to

the sending device without sending any packets across the physical network. This is done by using the IP

address 127.0.0.1, which is reserved specifically for this purpose. The loopback address is typically used

for testing a network stack because packets sent to this address go all the way down the network stack

to the Data Link Layer but are not sent to the Physical Layer. Instead, the Data Link Layer recognizes the

packets are destined for the same host that sent them and sends the packets right back up the stack. If

26

the packets can go down the network stack and back up again it’s a sign that the network configuration

is correct. But if the packets can’t be sent down the network stack and back then it’s a good indication

that something is wrong with the network configuration and needs to be corrected before checking any

network cables or switches or routers outside of the device being tested.

Non-routable addresses are also known as private IP addresses, and they are reserved for use within

private networks. As the name implies packets being sent from or to one of these addresses will not be

passed by any router and will never be transmitted across the Internet. If the packets need to be

delivered outside of the private network they will be forwarded to the Internet by the router, but first

the router will change the source IP address so that the packet looks like it’s coming from the router.

This process is called Network Address Translation or NAT.

You can think of these as being like internal phone numbers or phone extensions used in a large

organization. People inside the organization’s buildings can call these numbers but the phone extensions

cannot be reached from outside the organization. If someone inside the organization makes a call to the

outside world from one of these phones the internal number will be hidden, and it will look like the call

is coming from the organization’s main phone number. Non-routable IP addresses are used almost all

internal networks including home networks. That is, every business, government organization,

educational institution etc. will use non-routable IP addresses on their internal networks. This has been

done to free up the usage of most of the routable IP addresses and for the time being it's solved the

problem of the limited number of addresses available in IPv4.

Non-routable IP addresses are any that start with the following octets:

10.0.0.0

172.16.0.0

192.168.0.0

Broadcast addresses are used to send IP packets to all devices within a specific network segment. You

can think of a broadcast as being in a meeting with several people and saying “hey EVERYONE, please

listen to this”. If the IP network number is known the IP broadcast will 255 in the host portion. For

example, on the 192.168.1.0 network the broadcast address would be 192.168.1.255. Or, if the IP

27

network number isn’t known, the IP broadcast could be sent to 255.255.255.255 which ensures every

device on the network segment will see it. When an IP broadcast is transmitted, every device on the

network will see the broadcast and then send the IP packet further up the network stack to see if a

network application should respond or not.

This might sound very similar to the ethernet broadcast which uses the MAC address of

FF:FF:FF:FF:FF:FF, because it is. Both types of broadcasts are used to send data to every device on a

network. The difference between the IP broadcast and the ethernet broadcast is the way they’re used.

This is most easily explained by using an analogy, of asking for information from a group of people in a

crowded room. In this case let’s assume you can ask for information from a specific person by using their

name or their phone number. If you don’t know the name of the person you want to speak with but do

know their phone number, you can discover their name by shouting out their phone number. For

example, if you know you want to speak to the person with the phone number 547-0511, you can shout

“Would EVERYONE please listen, I’m looking for the person with the phone number 547-0511”.

Everyone in the room will hear you, and if someone has that phone number they’ll respond. Asking

EVERYONE to listen would be like a MAC broadcast.

Now let’s say there’s one person in the room who can provide a special service, and for this example

let’s say they can serve cheesecake. There’s only one person in the room who can give you cheesecake,

you just don’t know who they are or their phone number. To find this person you yell “Would EVERYONE

please listen. I’m looking for the person with ANY phone number that has cheesecake”. Everyone in the

room will hear your first sentence, which is like the MAC broadcast. Everyone will then pay attention to

your second sentence which is directed to anyone with a phone, which means everyone will think about

it, like the IP broadcast, and check to see if they have cheesecake. While everyone hears both things you

shout, the only person that will reply is the person with the cheesecake.

Here's the difference between the two types of broadcasts at a technical level. The MAC broadcasts are

processed at the Data Link Layer, which reads the broadcast data and passes it up to the Network Layer.

The Network Layer looks at destination IP address, and if it matches the computer’s IP address it passes

the data up the network stack to the programs using the network. This means a MAC broadcast that is

sent to a specific IP address will only be passed up the network stack on the one computer on the

network with that specific IP address. An IP broadcast will be passed up the network stack by every

28

computer on the network, and the network programs on each computer will have to determine whether

they should respond or not. This decision is made based on something called a port number, which

you’ll learn about in the sections on the Transport and Session Layers.

Oh, and I guess this might not be obvious, but there’s no way to have an IP broadcast without an

ethernet or MAC broadcast. That is, any IP broadcast must be sent inside an ethernet frame containing a

MAC broadcast. If the ethernet frame doesn’t use a MAC broadcast it will only be sent to a single device,

which defeats the purpose of trying to get all devices to read the IP packet.

IP broadcasts are used for tasks such DHCP which you’ll learn about below, and other types of network

activities where a device needs to discover which device is offering a service and doesn’t know who to

talk to. A long time ago the .0 address was also used as a broadcast, but today .0 is usually used to

describe a network. For example, all the devices with IP addresses ranging from 192.168.1.1 to

192.168.1.254 are said to be on the 192.168.1.0 network.

One last thing to note about IP broadcasts is they will not pass through a router. Hopefully you see the

sense behind this.

Multicast addresses are similar in function to broadcasts, as they’re used to send IP packets to multiple

devices for things like zoom meetings, multimedia streaming, or online gaming. But unlike broadcast

addresses, which deliver data to all devices within a network segment, multicast addresses target

specific groups of devices interested in receiving the data. The addresses in the range 224.0.0.0 to

239.255.255.255 are reserved for multi-casting.

The last thing to learn about in this section is another term, which is unicast. Unicast simply means an IP

address that’s being sent to a single device. The three terms, unicast, multicast, and broadcast cover the

entire range of possible IP transmissions. That is, broadcast packets are sent to every device on a

network, multi-cast packets are sent to some of the devices, and unicasts are sent to a single device.

29

IP Packets

This section is another in the series on the Network Layer and the Internet Protocol (IP). In this video

you're going to be introduced to IP packets and their format. There's a lot of detail involved so in this

section you'll learn what you need to know, the basic things you need to know about IP packets, while

the excruciating details are presented later where you can take a deep dive into them if you wish.

AN IP packet is a lot like ethernet frame in the sense that it's a package that will contain some data and

have fields that contain addressing information. But the specific fields in an IP packet are different, and

the purpose is also different, where IP packets are used to move data from end-to-end while ethernet

frames are used to move data from point-to-point.

Snail mail or UPS packages make a good analogy for explaining the IP rules for creating network packets.

With snail mail, anytime you want to send someone a letter you must put it in an envelope and address

the envelope correctly. There are sets of rules for how many pages you can place in a single envelope,

and for where and how the sender and recipient addresses must be written7. The addressing rules state

that the recipient address must be in the center on the front of the envelope, and the sender’s address

must be in the upper left corner. The addressing rules also state that the format of each address must

be the sender's name on the first line, street address on the second line, with the city, state, and zip

code on the third line. There is also a rule about how much you can fit in a single envelope, or to be

more correct there’s a rule that says you can only send up to 1 ounce with a single stamp, which is

typically 4-6 pages of normal weight paper and a standard envelope. For our analogy we’ll assume that

you’re always going to use a normal size envelope, and let’s say you can only put 5 pages in each

envelope. So, if you want to send more than 5 pages, you’ll have to break your message up into multiple

envelopes, and number the envelopes so the person you’re sending them to knows how to reassemble

them in the correct order.

The task of building and addressing IP network packets falls to the Network Layer, but instead of placing

letters inside envelopes the Network Layer takes any data from the upper layers of the network stack

and place it inside IP packets. Each IP packet is divided into two parts, a header section and a data

7 https://mystampguide.com/mail-pages-paper-with-one-stamp/

30

section. The header section is like the outside of the snail mail envelope, and the data section is like the

envelope that holds the actual message.

Now let’s take a closer look at the structure of an IP packet, which is shown in the following figure. Each

IP packet can be up to 65535 bytes in total and begins with a header section that requires 24 bytes

followed by a data section which can hold as little as 1 byte of data or as much as 65511 bytes of data.

Taking a closer look at the header shows that it stores several different pieces of information. The most

important fields are the Source IP Address and the Destination IP Address which ensure the packet can

be delivered and replied to. Here’s a quick description of some of the more important fields. (Complete

details of all the fields are provided below.)

Version (4 bits) - This is set to either 4 or 6 and describes which version of the IP protocol 4 or 6.

31

Header Length (4 bits) and Packet Length (16 bits) – The Header Length is the number the of 32-bit (4-

byte) words in the header, while the Total Length field specifies the total length of the IP packet in bytes,

including both the header and data sections. The maximum value for the Total Length field is 65,535

bytes, which is the maximum size of an IP packet.

Identification (16 bits) and Fragment Offset (13 bits) – These fields are used when multiple packets are

required to send a message. When a message is broken into pieces or fragments all the fragments will

have the same ID which is a number between 0 and 65535. And you can think of the Fragment Offset as

being like the sequence number for each piece so they can be reassembled in order. For example, if the

data requires 5 IP packets, the Fragment Offset in the first packet would be set to 1, the Fragment Offset

in the second packet would be set to 2, etc. This way the Network stack on the recipient computer can

put the data back together in the correct order. Note that this explanation of the Offset isn’t technically

correct, but it’s close enough while allowing for a simple explanation.

Time to Live (TTL) (8 bits) - This field is used to limit how many point-to-point hops a packet can make,

to handle the rare cases when packets to get “lost” and wander in circles between routers. The TTL field

is typically set to 64 and decremented by one by each router that processes the packet. The packet is

discarded if the TTL field reaches zero.

Header Checksum (16 bits): This field is used to detect errors in the IP packet header. The checksum is

calculated over the entire IP packet header, and if any errors are detected the packet is discarded.

Now let’s look at the amount of data that can added to an IP packet. An IP packet can hold as little as 1

byte of data or as much as 65511 bytes. 65511 might seem like a weird number, because it is, but

there’s a reason why this is the maximum amount of data. The explanation is that the field in the header

that holds the length of the packet is 2 byte or 16-bit binary number. This means the largest the number

can be is 216 or 65535. You might think that this means that the packet could hold 65535 bytes of data,

but the length also includes the header. And since the header is 24 bytes, the maximum amount of data

that can be placed in the packet must be reduced by 24 bytes, which means the max amount of data is

65511 bytes.

32

If the original amount of data is larger than 65511 bytes, the Network Layer will break the data up into

multiple IP packets. The Network layer will keep track of the sequence of packets and store the

sequence number for each packet in the Fragment Offset field in each IP packet’s header.

The last thing to address is the size difference between ethernet frames and IP packets. The total

maximum size of an IP packet is 65535 bytes, while the maximum size of an ethernet frame is 1500

bytes. The Data Link Layer will treat each IP packet as a chunk of data and try to stuff entire IP packet

inside the data section of an ethernet frame. If the IP packet is larger than 1500 bytes, it will be divided

into 1500 bytes chunks by the Data Link Layer each chunk will be placed inside an ethernet frame, and

then all the ethernet frames will be sent to the next point in the delivery chain. Once all the frames are

received, the Data Link Layer on the recipient computer will reassemble the IP packet and pass the

entire IP packet up to the Network Layer on the recipient computer. One of the great things about the

OSI model is that the Network Layer doesn’t really need to be concerned about this size difference, it

can just pass each IP packet down to the Data Link Layer and let the code at that layer handle the

delivery and reassembly on the recipient computer.

That’s a quick overview of the structure of an IP packet along with the header fields that everyone

should know, as well as an explanation of IP packet size.

Subnetting and Netmask Basics - Delivery of IP Packets

Once the IP packet is built, the next thing the Network layer needs to do is determine whether the

destination IP address is on the same network segment or a different network segment. It needs this

information to tell the Data Link Layer whether to send the packet directly to the destination, or if the

Data Link Layer should send the network packet to the default gateway/router. That is, the IP packet

contains the end-to-end addressing, but not the point-to-point addressing. The Network layer will

decide the next point in the delivery process using another piece of information called the netmask.

You just learned about IP addresses and how they are used to identify computers and devices on a

network. Even though each IP address looks like a single number it actually has two parts. Part of the

address, called the network portion, describes which network a device is on, and the other part, called

the host portion, identifies unique computers or devices. Determining which part of each IP address is

33

the network portion and which part is the host portion requires using another number called the

netmask. In this section you’ll learn about network and host portions of an IP address, and how the

netmask is used to specify which part of an IP address identifies the network and which part identifies

the host.

Let’s start by looking at how an IP address is used to specify two things, a network segment, and a

specific host on the network segment. In some ways this is like a land line phone number which can

have at two or more parts, depending on how you count. With a complete land line phone number,

there will be several parts, a country code, an area code, the prefix or exchange number, and finally the

line number. When you dialed a phone number with the phone system in the 1930s and 1940s, the

country code, area code and exchange would get your phone call connected to a human operator in a

specific geographic location, sitting at a switchboard. You would then ask the operator to connect your

call to a specific line, and the operator would physically move some a cable to patch your call from the

incoming line to the line you’re calling8. All the phones in a neighborhood shared the same area code

and exchange, but would have a unique line or circuit number, which was the last 4 numbers. The

human operators were eventually replaced by mechanical and electronic switching devices, but the

concept and the parts of the phone number remains the same, at least for land line numbers. That is,

the first part of the number identifies a specific country, area of the country, and switchboard or

exchange, while the last 4 numbers identify a specific line connected to that switchboard. In other

words, each phone number contains multiple parts.

IP addresses are similar to phone numbers in that they contain two pieces of information, part of the IP

address identifies a specific network segment and part of the address identifies a specific device on that

8 https://www.youtube.com/watch?v=r46zXIN3Nus

(You should definitely call this number)

34

network segment. In other words, all devices on the same network segment will share the same

network number. They’ll need different host numbers, but they must all share the same network

number.

While the two parts of an IP address are like a phone numbers, there are two big differences in the way

IP addresses and phone numbers divide their information and what we can learn from each part. The

first big difference is that with land line phone numbers we can use the country code, area code and

exchange to identify the geographic location of a phone. We can’t do this with cell phones since they’re

portable, but we can with land line phones. With IP addresses, the network portion of the number does

NOT tell us anything about the location of the network. There are ways we may be able to look this up,

but it’s not built into the system like it is with phone numbers.

The second big difference is that phone numbers are consistent in the way they divide the overall

number, while the portion of the IP address that describes the network and the part that describes the

host can vary. In land line phone numbers, the part that identifies a specific phone line will always be

the same part of any phone number. It’s different with IP addresses, where the part of the IP address

that specifies a specific computer on a network segment can vary. And this is what we need and use the

netmask for.

With IP addresses the network portion may be the first number or first octet, or it may be the first two

octets, or it may be the first three octets. For example, if we look at the IP address 22.56.79.115 the

network portion could be 22, in which case the part that identifies a specific computer would be

56.79.115. Or the network portion could be 22.56, in which case the host portion would be 79.115. Or

the network portion could be 22.56.79, in which case the host portion would be 115.

22.56.79.115

22.56.79.115

22.56.79.115

35

The network portion is always made up of numbers on the left, but you can’t tell just by looking at the IP

address. To make this determination you’ll also need another number called the netmask. The netmask

acts like a template, and it shows how to divide an IP address into its two parts.

Simple netmasks are also made up of 4 numbers, separated by dots or periods. However, in a simple

netmask the only numbers used are 255 or 0. For example, 255.255.255.0 would be a valid netmask. To

apply the netmask, just find portion of the netmask that contain the number 255. These octets will be

the ones in the IP address that describe the network. Any octets in the netmask that contain a 0 will

correspond to the host portion of an IP address.

For example, if we know an IP address is 22.56.79.115, and the netmask is set to 255.255.255.0, we

know that the first three numbers describe the network. Which means in this example the network

portion of the IP address would be 22.56.79. This also means that the host portion of the IP address

would be the last octet, or in this case 115.

Here’s another example using the same IP address, 22.56.79.115, but this time with a netmask of

255.255.0.0. Since the netmask has 255s in the first two octets, the network portion of the IP address is

22.56, while the host portion of the IP address is 79.115.

Figure 4.XXX – Netmasks are used to determine how much of an IP address describes the network

number, and which octet(s) describe the individual hosts on a network. This diagram shows the basic

netmasks.

36

Here are a couple of things to note. The first is that the 255s or network portion will always be on the

left and the 0s or host portion will always be on the right. That is, 255.255.255.0 and 255.255.0.0 are

valid netmasks, while 255.0.0.255 or 0.0.255.255 are invalid. The second thing to note is that a netmask

can actually contain numbers other than 255, which you’ll learn about below in the section on advanced

netmasks, but we’ll stick with 255s now as it makes explaining the process of using a netmask simpler.

Hopefully you can see that the netmask is a critical piece of information for any IP network

implementation, and that building and using a network with more than a single segment would be

impossible without knowing the netmask. For this reason, the netmask, along with the IP address, the

DNS server IP address, and the default router or default gateway are the 4 pieces of information that

must be configured on any device that wants to connect to an IP based network.

 Physical Address: A0-02-A5-C6-C8-93

 IPv4 Address: 186.18.11.98

 Subnet Mask: 255.255.255.0

 Default Gateway: 186.18.11.1

 DNS Servers: 212.8.91.10

You’ll learn more about netmasks later, but for now, you just need to know the following:

1. IP addresses are used to deliver network packets from end-to-end.

Figure 4.XXX – Examples of using different netmasks with the IP address 22.56.79.115.

37

2. Each device connected to a network must have a unique IP address.

3. IP addresses are made up of 4 numbers or octets, with each number ranging from 0-255.

4. The only way to know how an IP address is divided into the network portion and the host

portion is to use the netmask.

5. The numbers assigned to each octet in a netmask must be 255 or 0. Any octet that contains a

255 will describe the network and must on the left, and any octet that contains a 0 describes the

host and must be on the right.

Using the Netmask

In this section you’ll learn the process for using the netmask to determine whether two IP addresses are

on the same network segment or different segments. This is an important part of the overall networking

process, as it allows the Network Layer to tell the Data Link Layer where to send the ethernet frames.

That is, the netmask is a critical piece in the process used for determining where to send the IP packet in

the point-to-point transmission chain.

Let’s used the following diagram to illustrate this decision-making process, and how the netmask is used.

The figure shows two network segments connected by a router, with computers A, B, and C on Network

1, and computers D, E, and F on Network 2. As you’ve learned, if computer A wants to send data to

computer B, the data link layer will address the ethernet frames using computer A’s MAC address as the

source MAC and computer B’s MAC address as the destination MAC. However, if computer A wants to

send data to computer E, the data link layer on computer A will have to address the ethernet frames to

the router’s MAC. The question or problem that the netmask solves, is how does computer A’s network

stack decide whether or not the destination computer is on the same network segment?

38

This decision is made by comparing the network portion of the IP addresses of the source and

destination devices. If the network portions of both the source and destination show the devices are on

the same network, then the ethernet frames will be sent directly, but if the network portions show the

devices are on different networks the ethernet frames must be forwarded through the router.

But once again, how do we know which portion of the IP address is the host portion? This is where we

must know the netmask, as it tells us exactly how to divide the IP address into the network portion and

the host portion.

Let’s go through a few examples using a netmask of 255.255.255.0, which specifies that the network

portion of the IP address is the first three octets.

If Computer A wants to send network packets to Computer E, it will compare it’s IP address of

192.168.2.11 with Computer E’s IP address which is 192.168.3.21. Since the netmask is 255.255.255.0

Computer A’s Network layer will compare the first three octets of the IP addresses. For Computer A this

is 192.168.2 and for Computer E it’s 192.168.3. Since the network numbers are different, Computer A

will tell its Data Link Layer to send the ethernet frame to the router, instead of sending the ethernet

frame directly to Computer E.

Now let’s look at what happens if Computer A wants to send network packets to Computer C. In this

case Computer A will compare it’s IP address of 192.168.2.11 with Computer C’s IP address which is

192.168.2.31. Since the netmask is 255.255.255.0 Computer A’s Network layer will compare the first

three octets of the IP addresses. For Computer A this is 192.168.2 and for Computer C it’s 192.168.2.

39

Since the network numbers are the same, Computer A will tell its Data Link Layer to send the ethernet

frame directly to Computer C.

It's important to note that there’s a difference between the IP Network Packet addressing and the

ethernet frame addressing. The IP packet will always be addressed with the end-to-end IP addresses,

while the ethernet frames will be addressed with the MAC addresses of the next point in the delivery

process. Hopefully this makes sense, but if not, you’ll get a detailed demonstration of this a little later.

Before we end this section, here are a few examples, where you can check to see if you are able to apply

netmasks to determine whether two IP addresses are on the same network segment or different

segments.

Example 1:

IP address 1: 192.168.1.10

IP address 2: 192.168.1.20

Netmask: 255.255.255.0

In this example, because the netmask is 255.255.255.0 the first three octets describe the network, and

both IP addresses have the same numbers in the first three octets, 192.168.1. This means that both IP

addresses belong to the same network segment.

Example 2:

IP address 1: 192.168.1.10

IP address 2: 192.168.2.20

Netmask: 255.255.255.0

In this example, because the netmask is 255.255.255.0 the first three octets describe the network.

When we compare the first three octets, we find that the last number is different between the two IP

addresses, 1 for the first address and 2 for the second address. This means that the IP addresses belong

to different network segments.

Example 3:

40

IP address 1: 192.168.1.10

IP address 2: 192.168.4.20

Netmask: 255.255.0.0

In this example, the netmask is 255.255.0.0, which means that the first two octets are the network

portion, and the last two octets are the host portion. This means that both IP addresses belong to the

same network segment because their first two octets, 192.168, are identical.

Example 4:

IP address 1: 192.168.1.10

IP address 2: 10.3.46.20

Netmask: 255.255.255.0

In this example, the IP addresses belong to different network segments because their first octets are

different 192 vs. 10. Because the first octet is different, we don’t really need to even use the netmask.

But if we go through the process, we find that the netmask is still 255.255.255.0, which means that the

first three octets are the network portion, and the last octet is the host portion. Since the first three

octets are different, the two computers are on different network segments.

Example 5:

IP address 1: 12.168.1.10

IP address 2: 12.230.76.20

Netmask: 255.0.0.0

In this example, the netmask is 255.0.0.0, which means that the first octet is the network portion, and

the last three octets are the host portion. When we compare the first octets, we find that they’re both

set to 12, which means the two computers are on the same network segment.

Example 6:

IP address 1: 211.68.19.10

IP address 2: 211.68.19.156

Netmask: 255.255.255.0

41

In this example, because the netmask is 255.255.255.0 the first three octets describe the network. Both

IP addresses have the same numbers in the first three octets, 211.68.19. This means that both IP

addresses belong to the same network segment.

Example 7:

IP address 1: 10.2.78.1

IP address 2: 10.10.1.1

Subnet mask: 255.255.0.0

In this example, the subnet mask is 255.255.0.0, which means that the first two octets of the IP address

represent the network portion. When we compare the first two octets of the two IP addresses, IP

address 1’s network portion is 10.2 while IP address 2’s network portion is 10.10. Since these two

network numbers are different the devices are on different networks.

Example 8:

IP address 1: 10.20.10.11

IP address 2: 10.20.59.166

Subnet mask: 255.255.0.0

In this example, the subnet mask is 255.255.0.0, which means that the first two octets of the IP address

represent the network portion. When we compare the first two octets of the two IP addresses, we see

that they are both 10.20, which means that they are on the same network segment.

Netmasks, Numbers of Hosts, and Broadcast Domains

In this section you’ll take a closer look at the relationship between the netmask, number of hosts on a

network, and the broadcast domain. This will help you see that even though it may be possible to have

netmasks like 255.0.0.0 and 255.255.0.0, you’ll never see these in practice.

As you’ve learned, for any IP address the netmask defines what portion of the IP address describes the

network the device is on, and what portion of the address is the number identifying the specific host on

42

that network. Using a netmask of 255.255.255.0 means that the last octet can be used to identify hosts,

which means that there can be 254 different possible host numbers. For example, if the network

number is 12.45.67.0, devices on this network can be assigned host numbers 12.45.67.1 through

12.45.67.254.

The question we need to look at now is whether it’s practical, or even possible to have 254 different

devices on the same network. The short answer is that this is probably too many devices for a single

network. The longer answer requires reviewing how networks are physically constructed and reviewing

the concept of collision domains from ethernet and CSMA/CD.

Remember that a collision domain is the group of devices that share the same section of physical media

and will see each other’s network traffic. As more devices are connected and included in the same

collision domain, the greater the chance that a collision may occur. Going back to IP addresses, if all 254

devices using the same network number are connected using the old ethernet cable or using a hub it

means that every device will see all the network traffic, which also means that the odds of collisions will

be very high. An online zoom meeting is a good analogy for this situation, as the chance of two people

talking at the same time increases with each new person that joins the call. At some point, there will be

so many people in the zoom meeting that it will be difficult for anyone to say anything with being

interrupted. That is, having 254 people in a zoom meeting would almost certainly be too many.

Determining an exact optimal number of participants would depend on how much each person spoke

during the meeting, but assuming each person wanted to actively participate even 50 people would be

pushing the limits.

One of the key factors to note about network devices and collision domains is that a higher number of

devices is a problem when we’re talking about using hubs, not switches. Remember that hubs pass all

network traffic seen on any port to every other port on the switch. If switches are used, the switch will

segregate the network traffic and only send traffic out a port if the ethernet frame is addressed to the

MAC address of the device connected to the port. This reduces the collision domain to the single device

on each port and practically eliminates any problems with collisions that can be experienced when hubs

are used. When switches are used the number of devices that can use the same IP network number and

be on the same network segment will be limited by two features of the switch.

43

The first feature is the number of ports on the switch. Most switches come with a fixed number of ports,

starting with 8, 12, 24, and ranging up to 48. Each port on a switch can accommodate one network

device, such as a computer or printer. Larger organizations may utilize stackable switches which allow

multiple physical switches to be "stacked" together and function as a single logical switch. For example,

it is possible to stack four 48-port switches to connect 192 devices and make it seem as if they were

connected to the same switch.

Beyond the number of ports, another switch feature that limits the number of devices that can be

connected to the switch is an architectural feature called the backplane capacity. Each switch contains

hardware and software called the backplane that performs tasks like maintaining the table of MAC

addresses connected to each port, deciding where to send each incoming frame, and sending each

frame to the correct port. The maximum volume of network traffic each switch's backplane can handle

will vary by switch, but there will be a maximum value. If the amount of network traffic exceeds the

maximum value, it will lead to network congestion, delays, and reduced performance.

The two factors that impact the amount of network traffic the backplane must process at any time are

the number of connected devices and the amount of network traffic generated by each device. To

explain the amount of work that can be done by the backplane in a switch, let’s use an analogy of a

waiter or waitress working in a restaurant. Assume there’s a single person who can handle taking

customer orders, delivering food and drinks, and handling bills and taking payments. This wait person is

like the switch backplane and the network traffic the backplane needs to deliver to and from the switch

ports is like the things the wait staff needs to deliver to and from the customers.

The number of customers a single wait person can keep happy is affected by the number of tables in the

wait person’s section, and how much service is required by the customers at each table. The wait person

can easily handle two or three tables if the customers require the average amount of attention and may

be able to handle a dozen tables if the customers don’t need much help. But the wait person could be

overwhelmed by just a few tables if the customers order unusually large amounts of food and drink, or

are demanding in other ways that require more time and attention than usual.

For our analogy, the switch backplane is like the wait person, the switch ports are like the tables and

customers the wait person is assigned. The number of devices the back plane can serve without any

44

delays is affected by the number of ports and the amount of network traffic that needs to be

transmitted to or from each port. If the device connected to a port is the web server for a large

company, it could generate a lot of network traffic. But if the device is a computer that’s only used a few

hours each day, and mainly used for word processing, it won’t generate as much network traffic. Like

the food server, the backplane in most switches will be fast enough to handle normal amounts of

network traffic without delay, but the backplane could have problems if too many devices try and send

or receive large volumes of network traffic. Putting this in technical terms, let’s assume we have a switch

where the backplane has a capacity of 10 Gbps and this switch has 24 ports which can each run at 1

Gbps. If the devices on 10 ports transmit data at their maximum speed this will be 10 times 1 Gbps, or

10 Gbps which is the maximum rate the backplane can handle. But if devices on more than 10 ports try

to transfer data at their maximum speeds the backplane won’t be able to keep up and there will be

delays.

The point of all this is that even though it may be physically possible to stack five 48 port switches to

create a network with 250 devices, doing so will almost certainly degrade the overall network

performance. Just the sheer number of devices alone could overwhelm the backplane even if none of

the devices needs to transmit a large amount of network data. Returning to the restaurant analogy, the

wait person could easily become too busy to provide timely service if they’re asked to take care of 250

tables.

Getting back to the question whether it’s practical, or even possible to have 254 different devices on the

same network, this longer explanation shows why it’s probably not practical. That being said, the

netmask 255.255.255.0 is actually used quite often and it’s probably the netmask you’ll see in most

homes and small offices. It’s the most commonly used netmask because even though a netmask of

255.255.255.0 means it’s possible to have 254 hosts on the same network it doesn’t mean there has to

be that many. So, in most cases, especially home and small office networks, you’ll see a netmask of

255.255.255.0 but only a handful of connected devices.

And, if using a netmask of 255.255.255.0 isn’t practical because it means there can be 254 hosts on the

same network, then using a netmask of 255.255.0.0 with ~65500 hosts on the same network or using a

netmask of 255.0.0.0 with ~17.6 million hosts on the same network are extremely impractical. These

45

netmasks are used to teach how netmasks work, and may have been used at the very start of the

Internet, but today you’ll never see them used outside of a test lab or classroom.

Classless Inter-Domain Routing (CIDR)9

Another way to specify the netmask uses something called Classless Inter-Domain Routing or CIDR

notation. Using CIDR notation doesn’t cause the netmask to behave any differently, it’s just a more

concise way to write an IP address and netmask. The CIDR notation combines an IP address and the

netmask in a single string, with the IP address listed first, followed by a slash, then a single number

which specifies number of network bits. To get from some number of bits to the 255’s we’ve been using

in netmasks remember that netmasks and IP addresses are really made up of 4 octets, where each octet

is an 8 bit number. This means a CIDR number of 8 is saying the first octet or first 8 bits in the netmask

are set to 255, a CIDR number of 16 is 2x8, which means the first two octets in the netmask are set to

255, and a CIDR number of 24 is 3x8, which means the first 3 octets in the netmask are set to 255.

Let’s look at an example of 22.56.79.115/24. In this case the /24 on the end is the CIDR notation that

specifies that the first 24 bits of the address describe the network. This means that for this IP address

the network portion is 22.56.79.

Here are the basic subnet masks and their equivalent CIDR notations for an IP address 13.45.234.17.

 Netmask CIDR Network Address

13.45.234.17 255.0.0.0 13.45.234.17/8 13.0.0.0

13.45.234.17 255.255.0.0 13.45.234.17/16 13.45.0.0

13.45.234.17 255.255.255.0 13.45.234.17/24 13.45.234.0

The nice thing about the CIDR notation is that it conveys the same information as the IP address and a

separate subnet mask in a much more compact form. That is, it’s much easier to write

“13.45.234.17/24” than it is to write “13.45.234.17 and 255.255.255.0”

Here are a few examples of comparing IP network numbers from two IP addresses using CIDR notation:

9 https://en.wikipedia.org/wiki/Classless_Inter-Domain_Routing

46

Example 1:

IP address 1: 199.16.1.100/24

IP address 2: 199.16.2.200/24

In this example, the /24 means that the subnet mask is 255.255.255.0, which means that the first three

octets, or first 24 bits, of each IP address represent the network portion. When we compare the first

three octets of the two IP addresses, 199.16.1 and 199.16.2, we see that they are different. This means

that the two IP addresses are on different network segments.

Example 2:

IP address 1: 212.57.1.100/16

IP address 2: 212.57.19.200/16

In this example, the /16 means that the subnet mask is 255.255.0.0, which means that the first two

octets (16 bits) of the IP address represent the network portion. When we compare the first two octets

of the two IP addresses, we see that they are the same 212.157, which means that the two computers

are on the same network segment.

Example 3:

IP address 1: 10.20.30.142/8

IP address 2: 10.168.231.11/8

In this example, /8 means the subnet mask is 255.0.0.0, which means that the first octet, or first 8 bits,

of each IP address represents the network portion. In both IP addresses the first octet is 10, which

means that they are on the same network segment.

Default Gateway (Router) Basics

The next component to learn about is the default gateway or default router. You’ll first learn the general

function that routers provide, and then learn about the function of the default gateway and how it’s

used by the Network Layer. Note that this section only introduces routers and routing and only presents

47

the information you need to see how the Network Layer uses routers. You will learn the details of

routers and routing in a later section.

Let’s start with learning what routers do in a network. The main concept to understand about routers is

that they are used to connect different networks as opposed to a switch which is used to connect

different devices on the same network. That is, if you only have one network segment, you can connect

the devices on that segment using a hub or a switch. Routers on the other hand, are built specifically for

passing network packets between networks.

For routers to provide this important function they need to process network data in a different way than

other network devices. When a router receives network data, the network stack on the router acts

much like any other network stack with one important difference. Normally, when the Network Layer

receives data, it checks the destination IP address and discards any packets where the IP address doesn’t

match the device’s IP address. But the destination IP address won’t match the router’s IP address for

most of the packets the router processes. The destination IP address in the packets that are being

routed between networks will be the IP address of the final destination device, not the router’s IP

address.

This is where the router’s network stack will behave differently than other network devices. Rather than

discarding network packet, the Network Layer on the router will assume that it’s meant to forward the

packet to the next router in the point-to-point delivery chain and pass the IP packet up to the routing

application. The routing application code on the router will look at the destination IP address and use

something called a routing table to decide which network or router the IP packet should be sent to next.

The data will be passed back down the network stack and the router will build a new ethernet frame

that will be used to send the data to the next device in the point-to-point delivery chain. The router

places the original unchanged IP packet in the data section of the new frame and sends the frame to the

next device in the delivery chain. The routing process, where each router builds a new ethernet frame to

deliver the IP packet repeats in each router in the delivery chain until the IP packet reaches the final

destination device.

48

The part of this process, where the IP packet remains unchanged while the ethernet frame is

continuously changed is an important concept, so you should ensure that you understand why this

happens.

Now let’s look at how we tell devices on a network segment about the router they should use to send

data to a different network. For this system to work each device connected to a network needs to know

which routers can be used to reach different networks. Most networks, including home and office

networks, have a single router, which is called the default router. Note that Microsoft decided to call

this the default gateway, which is really a confusing mistake, since there are network devices called

gateways that perform a completely different function. But, regardless of what it’s called, the default

router/gateway is the device that will take network packets from one network and deliver them to a

different network and the network stack on each device must be configured with the IP address of the

default router.

Note that each device must be configured the IP address assigned to the default router, not the router’s

DNS name or the router’s MAC address. The information we really need to send ethernet frames to the

router is the router’s MAC address so you might think that it would be added to each device’s network

configuration, but the IP address is specified instead. Here’s the explanation why. The reason we don’t

configure the MAC address of the default router/gateway, which is the piece of information we really

want, is because using the IP address makes the system much more flexible. If we use MAC addresses,

then any time the router, or the NIC in the router is changed, we’ll have to change the network settings

of every device on the network and add the router’s new MAC address. But, if we use the IP address, we

can swap out the router or the router’s NIC without making any changes to the network settings on any

of the network devices. Note that this flexibility is only possible because of ARP. That is, if we swap out

the router or the router’s NIC, all devices on the network can use ARP and the router’s IP address to

discover the new MAC. And since the ARP process happens automatically, we won’t need to reconfigure

the network settings on any other devices on the network.

The reason you can’t use the DNS name is a short logic puzzle. If you could use the DNS name, then

before sending any network packets to the router you would have to first send network packets to a

DNS server to resolve the router’s name to an IP address. But, sending the network packets for the DNS

request requires sending those packets through the router itself, which you can’t do if you don’t know

49

the router’s IP address. But if you already have the router’s IP address, you’ll be able to use it to send

packets to the DNS server and avoid this Catch-22.

You should also note that most, but not all network administrators follow the convention of giving the

router the host number 1 for any network. That is, if the network number is 143.33.41.0, the router will

be assigned the IP address 143.33.41.1.

Now let’s look at how the default router/gateway is used by the Network Layer. When any device on a

network segment begins the process of sending network data the Network Layer uses the netmask to

decide if the recipient device is on the same network or not. The Data Link Layer then sends the data, or

ethernet frames to be technically correct, directly to the recipient if the destination device is on the

same network, or it sends them to the default gateway/router if the destination device is on a different

network.

This discussion about the default router/gateway might be a little confusing if your only exposure to

networks has been your home network, because in a home network the router that connects your home

network to the Internet typically also works as a switch, and maybe even as a modem. Instead of having

a separate box for the home network switch and home network router, most wireless routers used in

home networks act as a switch and a router. Your home router will act as a switch, connecting the

devices in your home network so you can do things like access your home printer or media server, but it

will also act as your network’s router, moving network packets between the devices on your home

network and the Internet.

You’ll learn more details about routers later in the class, but for now make sure that you know the basic

function of the default router/gateway, which is moving IP packets off your network to other networks

and the Internet, and why any computer connected to a network must know the IP address of its default

gateway/router.

50

Complete Delivery Demonstration

Here’s a complete walkthrough of the steps involved in delivering network packets from end-to-end, as

the packets go through a router, ARP is used to find MAC addresses, and DNS is used to resolve a

hostname to an IP address. While each step is relatively straightforward, there are several steps

involved and it can be helpful to see the entire process and how each step is performed. The

demonstration will use the devices addresses shown in the following figure, concentrating on how

network data is sent from Computer A to Computer F and back again.

At the start of this process each computer will be configured to use TCP/IP, which means each computer

will know the following information about its own network settings:

1. The MAC address on its network interface card (NIC)

2. Its IP address

3. The netmask

4. The IP address of the default router/gateway

Figure XXX - Two networks connected by a router, along with an Internet connection to a DNS

server.

51

5. The IP address of a Primary and Secondary DNS server

In addition to the computers, there’s a router that connects the two networks. The Router has three

NICs, one connected to Network 1, one connected to Network 2, and one connected to the Internet. The

Router has been configured so the NIC connected to Network 1 uses an IP address of 192.168.2.1 and

has a MAC address of 21:43:AB:1F:35:22, the NIC connected to Network 2 uses an IP address of

192.168.3.31 and a MAC address of 21:43:AB:1F:42:29, and the NIC connected to the Internet uses an IP

address of 16.74.223.87and a MAC address of 21:43:AB:1F:72:27.

Let’s assume that Computer A wants to send a message to Computer F which has a DNS name of

compF.Net2.org. To start, let’s look at what the network stack on Computer A knows about its network

settings:

1. The MAC address on its network interface card (NIC) is 64:4A:99:12:C5:7D

2. Its IP address 192.168.2.11

3. The netmask is 255.255.255.0

4. The IP address of the default router/gateway 192.168.2.1

Figure XXX – The router has three NICs, each with its own MAC and IP address. The third NIC is

connected to the Internet.

52

5. The IP address of a Primary DNS server 34.128.57.9

To deliver the data across the network Computer A is also going to need to know the MAC address of

the default router/gateway, which it can get using ARP, and the IP address of Computer F which it can

get using DNS. Here are the steps that the network stack on Computer A uses to discover the unknown

information, and to make this network transmission:

1. The process starts with an application on Computer A asking the network stack to send some
data to Computer F. This data is passed down the network stack to the Network Layer.

Figure XXX – All the computers have been configured to use TCP/IP and know their MAC and IP

addresses, the netmask used on their network, the IP address of the default router/gateway, and

the IP address of a Primary and Secondary DNS server.

Figure XXX – The Network Layer receives the request to send data to CompF.Net2.org.

53

2. The Network Layer of the stack receives this request and starts to build an IP packet. The data is

placed in the data portion of the IP packet and the Source IP in the header is set to Computer A’s

IP address which the network stack knows is 192.168.2.11. When the Network Layer tries to

write the Destination IP address for Computer F it runs into a problem as the IP address is not

known. The Network Layer only knows Computer F’s DNS name which is CompF.Net2.org.

However, the Network Layer knows it can use DNS to resolve the name CompF.Net2.org to an IP

address.

3. To get Computer F’s IP address, the Network Layer on Computer A has to put the original

network message on hold while it builds an IP packet with the DNS request for Computer F’s IP

address. The IP packet containing the DNS request uses the Source IP Address of 192.168.2.11,

which is Computer A’s IP address, and the Destination IP Address of the Primary DNS server

which is 34.128.57.9. The data portion of this IP packet holds the DNS request for

CompF.Net2.org.

Figure XXX – The Network Layer builds an IP Packet placing the application data in the data

section and using its own IP address as the Source IP. But it doesn’t know the Destination IP.

Figure XXX – To get the Destination IP Address the Network Layer builds a different IP packet

to resolve CompF.Net2.org to an IP address.

54

4. Once the IP packet with the DNS request is built, the Network Layer must decide whether to ask

the Data Link Layer to send it directly to the DNS Server, or if it needs to be sent to the default

router. That is, the Network Layer must decide whether the DNS Server is on the same network

segment or on a different network segment.

a. The network stack on Computer A makes this decision by using the netmask of

255.255.255.0 to compare Computer A’s IP Address which is 192.168.2.11 and the DNS

Server’s IP address which is 34.128.57.9. This comparison shows that the computers are

on different networks, which means the ethernet frame containing the IP packet should

be sent to the default router.

b. Because Computer A and the DNS Server are on different networks, the ethernet frame

containing the IP packet will be sent to the default router. The Data Link Layer on

Computer A builds an ethernet frame using its own MAC address, 64:4A:99:12:C5:7D, as

the source MAC.

c. The Data Link Layer on Computer A does not know the MAC of the default router, so it

puts the ethernet frame with the DNS request on hold while it builds an ARP packet to

discover the default router’s MAC address. The ARP process requires the following

steps:

Figure XXX – The netmask is used to determine if Computer A and the DNS server are on

the same network or not.

Figure XXX – The Source MAC and the IP Packet with the DNS Request are added to the

ethernet frame.

55

i. Computer A builds the ARP Request using its own IP address of 192.168.2.11 as

the Source IP and its own MAC address as the Source MAC. Computer A also

knows the IP address of the default router, since this is one of the items that

must be configured, so it sets the Destination IP address to 192.168.2.1. The

piece of information Computer A does NOT know, and the thing we’re trying to

find, is the MAC address of the default router. Since Computer A doesn’t know

this it uses a MAC broadcast of FF:FF:FF:FF:FF:FF as the destination MAC.

ii. Computer A’s NIC places the ARP packet on the network where it is seen by all

devices connected to the Network 1, including NIC 1 on the default router.

iii. The Data Link Layer on all devices on Network 1 look at the destination MAC

address, and since it’s a broadcast they all pass it up their network stacks to the

Network Layer. The Network Layer on all devices check the destination IP

address, and since it’s addressed to 192.168.2.1, which is the IP address of the

default router, all the Network Layers except the default router’s discard the

ARP packet. Since this packet is addressed to the default router, it unpacks the

data with the ARP request and sends it up the network stack.

iv. The Network Layer on the default router reads the ARP request and knows to

build an ARP response. To send the ARP response back to Computer A, it uses

Computer A’s IP address as the destination IP and Computer A’s MAC address as

the destination MAC. It knows both addresses as it received them in the ARP

request. The default router sets the source IP in the ARP response to its own IP

address, and the source MAC in the ARP response to its own MAC.

v. NIC 1 on the default router places the ethernet frame containing the ARP

response on Network 1.

vi. The ethernet frame is seen by Computer A’s Data Link Layer, and since it is

addressed to Computer A’s MAC the data is unpacked and sent up the network

stack. The Network Layer on Computer A reads the IP Packet header and sees

56

that the destination IP address matches its IP address, so it reads the IP Packet

data, extracting the MAC address of the default router.

Computer A now knows the following:

1. The MAC address on its network interface card (NIC) is 64:4A:99:12:C5:7D

2. Its IP address 192.168.2.11

3. The netmask is 255.255.255.0

4. The IP address of the default router/gateway 192.168.2.1

5. The IP address of a Primary DNS server 34.128.57.9

6. The MAC address of the NIC connected to Network 1 on the Router

21:43:AB:1F:35:22

d. Computer A’s network stack now has the MAC address of the default router, so its Data

Link Layer can finish building the ethernet frame holding the DNS Request by adding the

default router’s MAC address as the Destination MAC. Remember that the data portion

of this ethernet frame contains the IP packet with the DNS Request for CompF.Net2.org.

e. The Physical Layer on Computer A places the ethernet frame on the network media,

where it is seen by NIC 1 on the default router.

f. The Physical Layer on the default router reads the ethernet frame, and hands it to the

Data Link Layer. Since the destination MAC address matches the default router’s own

MAC address it unpacks the data from the ethernet frame and passes it up the network

stack to the Network Layer.

g. The Network Layer on the default router sees that the Destination IP address is not its

own IP address, so it builds another ethernet frame to send the IP Packet with DNS

request to the next router in the chain of routers on the path to the DNS server. NIC 2

on the router transmits this ethernet frame, sending the network data to the next

router in the transmission chain.

57

h. The DNS request is passed from router to router, or from point to point, with each

router building a new ethernet frame to hold the IP packet with the DNS Request, until

the IP packet finally reaches the DNS server.

i. The Data Link Layer on the DNS server reads the ethernet frame, and since the

Destination MAC address matches its MAC address it unpacks the data from the

ethernet frame and passes it up the network stack to the Network Layer.

j. The Network Layer on the DNS server sees that the Destination IP address matches its IP

address, so it unpacks the data in the IP packet and sends it up the network stack to the

DNS server application.

k. The DNS server reads the DNS Request and builds a DNS Response containing the IP

address for CompF.Net2.org. The DNS server sends the Response back down the

network stack, asking that it be sent to the IP address for Computer A.

l. The Network Layer on the DNS server builds an IP packet placing the DNS response in

the data section, setting the Source IP to the DNS server’s IP address, and setting the

Destination IP address to Computer A’s IP address. It knows Computer A’s IP address

because it was contained in the IP packet with the DNS request.

m. The Network Layer on the DNS server compares the Source and Destination IP

addresses using the netmask of 255.255.255.0 and determines that they are on

different networks. Since they’re on different networks the DNS server’s Data Link Layer

builds an ethernet frame to send to its default router. It places the IP packet containing

the DNS response inside the ethernet frame, sets the Source MAC to its own MAC, and

sets the Destination MAC to the MAC of the default router for its network, which it

knows as it was contained in the ethernet frame with the DNS Request.

n. The DNS server sends the ethernet frame to its default router. This router looks at the

frame, sees that the destination MAC matches its MAC, so it passes the data up its

network stack. Since the Destination IP address doesn’t match its own, it checks its

58

routing table for the next router in the chain and passes the data back down to the Data

Link Layer for shipment to the next router. The Data Link Layer places the IP packet with

the DNS Response in a new ethernet frame which is sent to the next router in the chain.

This process is repeated as the IP packet containing the DNS Response is passed from

point to point in the delivery chain, finally making it to Computer A.

o. The Data Link Layer on Computer A reads the ethernet frame, and since the Destination

MAC address matches its MAC address it unpacks the data from the ethernet frame and

passes it up the network stack to the Network Layer.

p. The Network Layer on Computer A sees that the Destination IP address matches its IP

address, so it unpacks the IP data and sees that it contains the DNS Response with the IP

address for CompF.Net2.org.

Computer A now knows the following and has everything it needs to build the IP packet

to send to Computer F:

1. The MAC address on its network interface card (NIC) is 64:4A:99:12:C5:7D

2. Its IP address 192.168.2.11

3. The netmask is 255.255.255.0

4. The IP address of the default router/gateway 192.168.2.1

5. The IP address of a Primary DNS server 34.128.57.9

6. The MAC address of the NIC connected to Network 1 on the Router

21:43:AB:1F:35:22

7. The IP address of Computer F 192.168.3.31

5. The Network Layer on Computer A now has the IP address of COmpF.Net2.org, 192.168.3.31,

and can return to building the IP packet to send the data to Computer F. The Network Layer

writes 192.168.3.31 in the Destination IP address field of the IP packet.

6. Computer A’s Network Layer determines whether to ask its Data Link Layer to send the ethernet

frame directly to Computer F, or if the ethernet frame should go to the default router. It does

59

this by using the netmask to find the network portion of 192.168.2.11 and 192.168.3.31. Since

the netmask is 255.255.255.0 it uses the first three octets and compares 192.168.2 with

192.168.3. Since the network numbers are different, it asks the Data Link Layer to send the

ethernet frame to the default router.

7. The Data Link Layer on Computer A builds an ethernet frame to send to the default router. It

uses its own MAC address of 64:4A:99:12:C5:7D as the source MAC. At this point Computer A

probably has the MAC address of the default router in its ARP cache, and it can set the

destination MAC to the cached MAC address in the ethernet frame. If Computer A doesn’t know

the default router’s MAC address it uses ARP to find it using the process detailed in step 2B. The

Data Link Layer on Computer A places the IP packet in the data section of the ethernet frame.

8. The Data Link Layer on Computer A hands the ethernet frame to the Physical Layer for

transmission on the network media for Network 1.

9. The Physical Layer on the Router’s1st NIC sees the network transmission and hands it up to its

Data Link Layer.

10. The Data Link Layer on the Router checks the ethernet frame and sees that the destination MAC

address matches its MAC, so it unpacks the IP packet data and hands it up the network stack to

the Router’s Network Layer.

11. The Network Layer on the Router checks the destination IP address and sees that it doesn’t

match its own IP address. The router knows that this means it is supposed to route the packet to

another network. Using its routing tables, the Router determines that the packet should be sent

out across its other network interface, the NIC connected to Network 2. The Router then builds

another ethernet frame, adding the IP packet to the data section of the ethernet frame. The

Router sets the source MAC as the MAC address of its second NIC, which is 21:43:AB:1F:42:29. If

the Router doesn’t know Computer F’s MAC address it uses ARP to find it. Once the Router has

Computer F’s MAC address, 64:4A:99:12:90:01, it puts it in the ethernet frame as the

destination MAC address.

60

12. The Router hands the ethernet frame to the Physical Layer for its 2nd NIC, which places the

transmission on Network 2.

13. Computer F’s NIC see’s the transmission and hands the ethernet frame to its Data Link Layer

which checks the destination MAC address and sees that it matches its own MAC address. Since

it’s a match, the Data Link Layer unpacks the IP packet from the ethernet frame and hands it up

to the Network Layer.

14. The Network Layer on Computer F checks the destination IP address and sees that it matches its

IP address, so it knows it should further process the network transmission. It unpacks the data

from the IP packet and passes it up the network stack to the appropriate program.

15. If the application on Computer F needs to reply to Computer A, it builds the reply and passes it

back down the network stack to the Network Layer.

16. The Network Layer on Computer F builds an IP packet using its own IP address as the source IP

and Computer A’s IP address as the destination IP. It knows Computer A’s IP address because it

was in the IP packet Computer F received from Computer A. The reply passed down the network

stack from the application is placed in the data portion of the IP packet.

17. Computer F’s Network Layer determines whether to ask its Data Link Layer to send the ethernet

frame directly to Computer A, or if the ethernet frame should go to the Router. It does this by

using the netmask to find the network portion of 192.168.3.31 and 192.168.2.11. Since the

netmask is 255.255.255.0 it uses the first three octets and compares 192.168.3 with 192.168.2.

Since the network numbers are different, it asks the Data Link Layer to send the ethernet frame

to the Router.

18. The Data Link Layer on Computer F builds an ethernet frame to send to the Router. It uses its

own MAC address of 64:4A:99:12:90:01 as the source MAC. At this point Computer F probably

has the MAC address of the default router’s 2nd NIC in its ARP cache, and it can set the

destination MAC to the cached MAC address in the ethernet frame. If Computer F doesn’t know

the MAC address of the Router’s 2nd NIC it uses ARP to find it using the process detailed in step

61

2B. The Data Link Layer on Computer F places the IP packet in the data section of the ethernet

frame.

19. The Data Link Layer on Computer F hands the ethernet frame to the Physical Layer for

transmission on the network media for the second network segment.

20. The Physical Layer on the Router’s 2nd NIC sees the network transmission and hands it up to its

Data Link Layer.

21. The Data Link Layer on the Router checks the ethernet frame and sees that the destination MAC

address matches its destination MAC. Since the ethernet frame is addressed to the Router, it

unpacks the IP packet data and hands it to the Router’s Network Layer.

22. The Network Layer on the Router checks the destination IP address and sees that it doesn’t

match its own IP address. The router knows that this means it is supposed to route the packet to

another network. Using its routing tables, the Router determines that the packet should be sent

out across its first NIC. The Router then builds another ethernet frame, adding the IP packet to

the data section of the ethernet frame. The Router sets the source MAC as the MAC address of

its first NIC and the destination MAC to the MAC address of Computer A which it should have in

its ARP cache.

23. The Router hands the ethernet frame to the Physical Layer for its first NIC, which places the

transmission on the network media for the first network segment.

24. Computer A’s NIC see’s the transmission and hands the ethernet frame to its Data Link Layer

which checks the destination MAC address and sees that it matches its own MAC address. Since

it’s a match, the Data Link Layer unpacks the IP packet from the ethernet frame and hands it up

to the Network Layer.

25. The Network Layer on Computer A checks the destination IP address and sees that it matches its

IP address, so it knows it should further process the network transmission. It unpacks the data

from the IP packet and passes it up the network stack to the appropriate program.

62

This demonstration shows how everything you’ve learned up to this point is used to move network data

from end-to-end, by making more than one point-to-point transmission, and how this is made possible

using the IP addresses, netmask, MAC addresses, DNS server IP address, default router/gateway IP

address, and ARP. While the process might seem complicated because of the number of steps, each step

is relatively straightforward. If you find the entire process confusing, ensure that you understand what is

being accomplished in each individual step and why this happens.

Viewing and Configuring Network Settings on a Windows Computer

Now that you’ve learned the basics about IP addresses, netmasks, the default gateway/router, and DNS,

and how they work together at the Network Layer, let’s look at configuring and checking these network

settings on a Windows based computer. First, you’ll learn two ways to check the network settings on a

Windows based computer, and then you’ll learn the two or three ways to configure the network

settings. The two ways to configure the network settings are to do the configuration manually or to use

a network service called Dynamic Hardware Configuration Protocol (DHCP) to automatically do the

configuration. There’s also a third way to configure some, but not all, of the settings using something

called Automatic Private IP Addressing (APIPA).

To start, let’s look at the two ways to view the current network settings. The first is to open a command

window and use the ipconfig command. To do this, first open a Command Window using these

steps:

1. Go to Windows Search and type cmd, then select Command Prompt. This opens the Command

Prompt application.

63

2. Place the cursor in the Command Prompt window and type: ipconfig /all | more . (The pipe

character “|” is usually found just above the <enter> key on the keyboard.) This will display the

network settings, one page at a time.

Figure XXX – Starting the Command Prompt application.

Figure XXX – Running the ipconfig /all | more command.

64

3. Use the <enter> key to scroll through the file until you find settings for your currently active

network adapter. If you are connected to the network via a wired connection this will probably

be the Ethernet adapter section. If you’re connected to a wireless network this will be the

Wireless LAN adapter Wi-Fi section.

The second method for viewing the network configuration is to use the Windows Settings using this

process:

1. Open Windows Settings by going to the Windows Start button , then select Settings .

2. Click on Network & internet, then click on Wi-Fi if you’re connected to a wireless network or

Ethernet if you’re connected to a wired network.

Figure XXX - Opening Windows Settings

65

3. Open the network you’re connected to by clicking the box with the network name.

4. Scroll down to view the network settings.

Figure XXX - Opening the Network & internet settings.

Figure XXX - Opening the current network connection.

66

Manual Configuration
Manually configuring the network settings on a computer or phone requires knowing a couple of things.

The first is the network settings themselves. You’ll need to know the IP address, the netmask, the IP

address of the default gateway, and the IP address for the DNS resolver(s), of which there are typically

two, a primary and a secondary which will act as the backup in case the primary is not available.

The second thing you’ll need to know is where to go to get the values for the network settings.

Remember you can’t just make these up, you’ll need to get them from someone who got them from

IANA. If you’re configuring the settings manually, then you’re probably going to be working as a network

administrator, where someone above you in the network chain of command will provide you with the

information you need. This might be a head network administrator for an organization, or if you’re the

head net admin you’ll get your IP addresses from someone at your network’s ISP.

If you’re looking at your home network and want to manually configure the network settings you should

first note that this is typically done using DHCP, which automates and simplifies the process. If you still

want to do the configuration manually, you’ll need to login to your router and get the IP address of the

router and the IP address of the DNS resolver(s). The set of IP addresses you assign to each device on

Figure XXX – Viewing the current network settings.

67

the network will typically come from the non-routable network 192.168.0.0., and the netmask will

typically be 255.255.255.0. (You’ll learn about the non-routable IP addresses later in this section.)

Once you have the network settings, the last thing you’ll need to know is how to configure them on your

device. You’ll learn how to do this for Windows based computers below, but the process will be

different in every OS and on every device. If you need to configure the settings on a different OS or

device, you can undoubtedly find help on the Internet.

DHCP
Dynamic Host Configuration Protocol (DHCP) is a network protocol and process that automatically

assigns IP addresses, netmasks, and the IP addresses of the default gateway and DNS servers to devices

on a network. Using DHCP to automatically configure the network settings makes it much easier to

manage a large network, and it also makes it easier for non-technical users, so it’s used on most home

networks.

DHCP works by having a DHCP server on the network that manages a pool of available IP addresses.

When a new device connects to the network, it sends a broadcast message looking for a DHCP server

and asking for an IP address. The DHCP server receives this message and responds with an offer of an

available IP address. The device then accepts the offer and the DHCP server assigns the IP address to the

device for a set amount of time, known as the lease time.

DHCP is particularly useful in large networks because it reduces the amount of manual configuration

that needs to be done. It’s not difficult to configure the network settings on any single device, but on a

large network with hundreds or thousands of devices, configuring and managing the network settings on

all the devices would take a lot of time.

DHCP also makes connecting to home networks or networks outside the home much easier. Think about

your home network and the devices you connect. Typically, the only thing you, or anyone that connects

to your home network, needs to do is connect to your wireless router. You don’t need to set or change

the IP address, netmask, default gateway, and DNS server. This is because your computer is set to DHCP,

and when you connect the computer to your home network your router acts as a DHCP server and gives

68

your computer the IP address to use, along with the correct netmask, default gateway IP address, and IP

addresses for the primary and secondary DNS servers. The same thing happens when you travel with

your computer and connect to a network at a business, motel, or airport. That is, you don’t have to

configure any of the network settings, instead your computer sends out a DHCP broadcast when you

initially connect to the network and gets the network configuration settings from a DHCP server.

Another benefit of DHCP is that it allows for efficient use of available IP addresses, as devices are only

assigned an IP address when they need it, and the address can be released when it is no longer needed.

You’ll learn the details about DHCP later in the class.

APIPA
Automatic Private IP Addressing (APIPA) is a feature in Microsoft Windows operating systems that

provides a fallback mechanism for devices when they cannot obtain an IP address from a DHCP server.

APIPA is designed to allow devices on a local network to communicate with each other even when

there’s no DHCP server available. When a device is unable to obtain an IP address from a DHCP server, if

it’s using APIPA it automatically assigns itself an IP address in the range of 169.254.0.1 to

169.254.255.254. This address is known as an APIPA address. Devices with APIPA addresses can

communicate with each other on the local network, but they can’t communicate with devices on other

networks or access the Internet. APIPA does not provide a default gateway or DNS server, so devices

with APIPA addresses cannot access resources outside of their local network.

APIPA isn’t meant to be a replacement for DHCP, it’s just meant to be used to connect to a network “in

case of emergency”, which means in situations where a DHCP server is not available. APIPA provides

enough to get a computer connected to the local network segment, but even then, the computer may

not be able to communicate with other network devices such as file servers or printers if the other

devices don’t have IP addresses that use the same network number. And this will probably be the case if

your network has a DHCP server that unexpectedly becomes unavailable. That is, devices that connected

to the network using settings from the DHCP server will use one set of network numbers, while devices

69

that try to connect to the network after the DHCP server goes down will use a different set of network

numbers.

In general, APIPA should only be used as a last resort, in emergencies when a DHCP server is not

available, and it should not be relied upon as a long-term solution for network addressing.

Manual Configuration and DHCP Configuration in Windows
Here’s the process for manually configuring the network settings or selecting DHCP on a computer

running Microsoft Windows:

1. Open the Control Panel from the Start menu.

2. Click on Network and Sharing Center. Note that there are several ways to get the Network and

Sharing Center, but these steps are the quickest.

3. In the left-hand menu, click on Change adapter settings.

4. If you’re checking a wired network connection

double-click the network adapter you want to

configure, or right-click on the network adapter and

select Properties. If you’re checking a wireless

connection, double-click the wireless adapter, then

select the Properties button at the bottom of the

dialog box.

70

5. Find Internet Protocol Version 4 (TCP/IPv4) in the

list of items in the middle of the dialog box, then

select it and click Properties or double-click it.

6. In the new dialog box, ensure that the General tab is

selected. This is where you will set the IP address,

Subnet mask, Default gateway, and DNS server

values. You can see that there are two sections in the

dialog box for entering these values, one for the IP

address information and one for the DNS server

addresses. If these are set to Obtain an IP address

automatically and Obtain DNS server automatically it

means the computer is set to use DHCP. Note that if

you select DHCP, you won’t see any values for the IP

address settings of the DNS servers. If the computer

uses DHCP and it’s connected to the network, it will have appropriate values for these settings,

but they will remain blank in this dialog box.

71

7. To manually set the network values, select Use the

following IP address and Use the following DNS

server addresses. Note that for DNS, Microsoft uses

the terms Preferred DNS server and Alternate DNS

server for what we called DNS Resolvers in the

explanation of the overall DNS system.

8. Once the network settings are configured, click OK to

exit the Properties window.

Basic Network Troubleshooting

Next, let’s look at troubleshooting possible problems with the IP configuration. As you’ve seen there are

a lot of settings that could be wrong, and several components such as DHCP, the default gateway, or

DNS that could be having issues, so having a good troubleshooting process is important. In this section

you’ll learn about a few commands and tools used for troubleshooting, and a special IP address called

the localhost or loopback address that’s also used for troubleshooting the network stack. We’ll start by

going through a troubleshooting process that checks every possible problem, and then finish by looking

at what steps of the process would be used to check specific problems.

In our general troubleshooting process, we’ll do a set of checks that starts with checking things on the

local computer, then work our way out to check network components like DNS or the default gateway.

Hopefully you can see the sense in checking to make sure the IP settings are correct on a computer

before we start checking DNS servers. It’s kind of like if we were having trouble sending snail mail. It

would be smarter to make sure we put a stamp on the envelope first, before we start checking for

problems with mail sorting machines in Spokane and Seattle.

Here are the steps I suggest you use for troubleshooting network connections:

72

1. Check the physical connections. Ensure that all cables are securely connected and that the network

interface is enabled. Look for LED lights on the network interface and if you have access to it, check

for lights on the switch or router to verify that end of the cable is also connected and working.

2. Check the IP settings. Verify that the computer has a valid IP address, subnet mask, default gateway,

and DNS server address. This is done by using the ipconfig /all command on Windows.

3. Use ping to check the network stack. This test will check to see if the network stack is functioning

by asking the computer to talk to itself through the computer’s network interface. If this test fails,

it’s a sign that some part of the computer’s network software is not configured right or not working

as expected. If the test is successful, it means that the network stack is functioning correctly.

The ping tool is a network utility used to test the connectivity and reachability of a host on an

Internet Protocol (IP) network. When you start ping, you give it the name or IP address, and

then ping sends a series of small packets of data, called Internet Control Message Protocol

Ethernet adapter Ethernet:

 Connection-specific DNS Suffix . :

 Description : Intel(R) Wi-Fi 6 AX201 160MHz

 Physical Address. : 84-5C-F3-CA-82-B7

 DHCP Enabled. : Yes

 Autoconfiguration Enabled : Yes

 Link-local IPv6 Address : fe80::f631:51fb:eb16:9e62%4(Preferred)

 IPv4 Address. : 192.168.1.6(Preferred)

 Subnet Mask : 255.255.255.0

 Lease Obtained. : Wednesday, May 3, 2023 3:56:44 PM

 Lease Expires : Friday, May 5, 2023 6:32:53 AM

 Default Gateway : 192.168.1.1

 DHCP Server : 192.168.1.1

 DHCPv6 IAID : 59006195

 DHCPv6 Client DUID. : 00-01-00-01-28-2E-19-CC-34-73-5A-DE-7A-3B

 DNS Servers : 192.168.1.1

73

(ICMP) echo requests, to the target host. Ping waits for a response for each request, which

should be an ICMP echo reply. The ICMP echo requests don’t have any data, there just used to

“knock on the door” of network devices and see if anyone answers or not.

When you run the ping command, the program creates a series of ICMP packets and sends them

to the target IP address. The ping tool measures the round-trip time for each packet to travel

from the source host to the target host and back again. It also displays information about the

number of packets sent, received, and lost, as well as the minimum, maximum, and average

round-trip time (RTT) for each packet.

The ping tool is commonly used for testing and troubleshooting network connectivity issues,

such as identifying network latency, packet loss, or connectivity problems, but in this case, we’re

having a computer ping itself, just to test to see if the network stack is operating. This is

accomplished by telling ping to target a special IP address, 127.0.0.1, which all network software

use to refer to the computer the software is running on. We also use the names localhost or

loopback to refer to 127.0.0.1.

When packets are sent to the loopback address, they are processed by the network stack in the

same way as packets that are sent to any other IP address. The network stack is the set of

protocols and services that are responsible for sending and receiving network data on a

computer.

When an application like ping sends data to the loopback address, 127.0.0.1, the data is first

processed by the upper layers of the network stack, then passed down to the network layer,

where it is encapsulated in an IP packet and the source and destination IP addresses are set to

127.0.0.1. The IP packet is then passed down to the data link layer, where it is encapsulated in

an ethernet frame where the source and destination MAC addresses are set to the computer’s

MAC address. The ethernet frame is then sent out on the loopback interface, which is a virtual

network interface that represents the loopback address. The packet is not actually sent out on

any physical network but is instead looped back to the computer's own network stack.

74

When the packet is received by the loopback interface, it is processed by the network stack in

the reverse order that it was sent. The data link layer unpacks the ethernet frame and hands the

IP packet to the network layer. The Network layer unpacks the IP packet and passes the data

back up to the upper layers in the network stack.

Sending packets to 127.0.0.1 or the loopback interface allows applications on a computer to

communicate with itself, testing the network stack as if the packets were being sent and

received from the network.

4. Check local network connections and default gateway. If the computer can ping itself, you can be

assured that the network stack is functioning. The next thing to do is to try and connect to other

devices on the same network segment. The network connection we typically test next is the one to

the default gateway. Testing this connection makes sense since we’ll need the default gateway in

later tests, so we might as well test it now.

The first step in performing this test is to find the IP address of the computer’s default gateway, which

can be found using the ipconfig /all command, which you did in step 2. Next, run ping using the

default gateway’s IP address as the target for ping. For example, if the default gateway’s IP address is

192.168.1.1 you would run the command:

Pinging 127.0.0.1. A successful ping is shown on the left, and an unsuccessful ping is shown on the

right.

C:\WINDOWS\system32>ping 127.0.0.1
Pinging 127.0.0.1 with 32 bytes of data:
Reply from 127.0.0.1: bytes=32 time<1ms TTL=128
Reply from 127.0.0.1: bytes=32 time<1ms TTL=128
Reply from 127.0.0.1: bytes=32 time<1ms TTL=128
Reply from 127.0.0.1: bytes=32 time<1ms TTL=128
Ping statistics for 127.0.0.1:
 Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
 Minimum = 0ms, Maximum = 0ms, Average = 0ms

C:\WINDOWS\system32>ping 127.0.0.1
Pinging 127.0.0.1 with 32 bytes of data:
Request timed out.
Request timed out.
Request timed out.
Request timed out.
Ping statistics for 127.0.0.1:
 Packets: Sent = 4, Received = 0, Lost = 4
(100% loss),

75

ping 192.168.1.1

As in the previous step, if this is successful the default gateway will send back replies, but if it isn’t

successful ping will display a request timed out message. If this test succeeds it means your computer

can make network connections with other devices on the local network segment and reach the default

gateway. If this test fails, it means that there’s an issue making connections to the local network

segment, or there are problems with the default gateway. To narrow this down you can:

A. Check other devices on the local network segment and see if you can ping those devices

from your computer. If you can ping another device, it’s a good sign that you either

have the wrong IP address for the default gateway, or there’s an issue with the default

gateway.

B. Log in to another device on the same network segment and ping the default gateway. If

you can ping the default gateway from another device, it’s an indicator that there’s a

hardware issue on your computer, the IP address of the default gateway is incorrect on

your computer, the netmask on your computer is incorrect, or possibly the host firewall

is blocking the network traffic.

5. Check the DNS server network connection. If the computer can successfully ping the default

gateway, you can be assured that the computer can make connections to other devices on the same

network segment, and probably make connections to computers on the Internet or computers on

other networks. If you’re still having problems connecting to computers on other networks the next

thing to test is the connection to the DNS server. This will help eliminate the possibility that the

problem is in resolving a DNS name to an IP address.

The first step in performing this test is to find the IP address of the computer’s DNS server, which

can be found using the ipconfig /all command, which you did in step 2. Let’s assume the IP address

for the DNS server is 192.168.24.21. Next, run ping using the DNS server’s IP address as the target

for ping. For example:

76

ping 192.168.24.21

If the DNS server replies to the ping packets, it means the test is successful and you can proceed to

the next step. If this test fails, it means that there’s an issue making network connections to the DNS

server, or there are problems with the DNS server. To narrow this down you can try connecting to

the DNS server from another device on the local network segment. If you can ping the DNS server

from a different computer, it’s a good sign that you either have the wrong IP address for the DNS

server, or there’s an issue with the DNS server. If all the computers on the local network segment

have issues connecting to the DNS server, you should get in touch with the organization that

manages the server and make them aware of the issue.

6. Ask the DNS server to Resolve a DNS Name. If the computer can successfully ping the DNS server,

the next thing to test is to ensure the DNS server returns an IP address if you send it a DNS name. On

windows systems this is done using the nslookup utility, while on Linux systems and Macs the

dig utility program is used. To run nslookup on Windows, start the Command Prompt

application, then type nslookup followed by a DNS name. For example:

C:\WINDOWS\system32>nslookup google.com

Server: UnKnown

Address: 192.168.1.1

Non-authoritative answer:

Name: google.com

Addresses: 2607:f8b0:400a:806::200e

 142.251.211.238

If the nslookup query returns an error message saying that it can’t find the DNS name you asked for,

chances are high that you mistyped the name. If this happens you should try a common name that’s

easy to type, such as google.com.

C:\WINDOWS\system32>nslookup nosuchhostmadeupname.com

Server: UnKnown

77

Address: 192.168.1.1

*** UnKnown can't find nosuchhostmadeupname.com: Server failed

If the nslookup query times out, it’s an indication that you have the wrong IP address for the DNS

server. At this point you should double check the DNS server’s IP address or try running nslookup

from another computer. If you can’t connect to the DNS server from any computers on the network

segment you will have to get in touch with the system administrator for the DNS server.

C:\WINDOWS\system32>nslookup google.com

DNS request timed out.

 timeout was 2 seconds.

Server: UnKnown

Address: 192.168.1.14

DNS request timed out.

 timeout was 2 seconds.

DNS request timed out.

 timeout was 2 seconds.

DNS request timed out.

 timeout was 2 seconds.

DNS request timed out.

 timeout was 2 seconds.

*** Request to UnKnown timed-out

7. Check the Entire Internet. If you’re able to get the DNS server to resolve DNS names, and still can’t

connect to the Internet or a specific computer on the Internet the next step is to check all the

routers between your network and the Internet, or between your network and the specific

computer. You’ll learn the details about routers in a later section, but there are typically several

routers between any home network and the Internet or between any local network segment and

the Internet. Any of these routers could be having trouble, preventing network packets from being

transmitted. To check this, we use a program called tracert which is short for traceroute.

78

The traceroute program allows you to see the path your network packets take between your

computer and a specific network host, reporting back on each successive router that handles the

packets. Each time a network packet is sent to another router it’s called a hop. Traceroute works by

sending ICMP packets, like those used by ping, with ever increasing Time To Live (TTL) values. The

TTL is a setting that’s used to keep network packets from wandering around the network forever.

This is done by setting a max TTL when a packet is first sent, then decreasing it by one each time it

makes another hop to a new router. The first packet that traceroute sends out will have TTL=1. The

first router that handles the packet, which will be the default router, will send an ICMP response

back to traceroute, then decrement the TTL, which in this case will set it to 0. Since the TTL is 0, the

router will not forward the packet to the next router, it will simply delete it. Note that traceroute

actually sends 3 packets to each router, not one, and will display the round-trip times for each

packet.

When the traceroute program receives the ICMP response, it will generate a second ICMP request

but this time set the TTL=2. This packet will go to the first router, which will decrement the TTL,

making it 1, then send the packet to the next router on the path to the final destination. This second

router will send back an ICMP response and decrement the TTL. Since the TTL is 0, the second router

will drop the network packet.

This process continues, with the traceroute program sending successive packets and receiving

successive ICMP response packets from each router as the packets take one additional hop on each

iteration.

C:\WINDOWS\system32>tracert google.com

Tracing route to google.com [142.251.211.238]

over a maximum of 30 hops:

 1 1 ms 1 ms 1 ms 192.168.1.1

 2 4 ms 3 ms 4 ms fdr01.knwc.wa.nwestnet.net [50.46.181.118]

 3 3 ms 44 ms 4 ms cr1-knwcwaxa-a-be500.bb.as20055.net [64.52.98.0]

 4 10 ms 10 ms 10 ms lr1-umtloraz-b-be-12.bb.as20055.net [198.179.53.18]

 5 10 ms 9 ms 8 ms lr1-yakmwafp-a-be-17.bb.as20055.net [204.11.64.133]

 6 * * * Request timed out.

79

 7 13 ms 11 ms 32 ms google-sttlwawb-a.pni.as20055.net [107.191.239.0]

 8 14 ms 11 ms 11 ms 142.251.229.137

 9 11 ms 11 ms 9 ms 216.239.43.121

 10 10 ms 9 ms 9 ms sea30s13-in-f14.1e100.net [142.251.211.238]

Trace complete.

The output from tracert shows the number of hops in the first column, the round-trip times for each

of the three ICMP packets sent to each router, the DNS name of the router if it’s available, and the

IP address of the router. The DNS names for most routers will be hard to decipher because they’re

typically strings of characters the ISPs and backbone providers use to identify the router, and not

something meant for normal user consumption. Sometimes you can tease the location of the router

from the name, but not always. This might give you an idea of where the router is physically located.

For example, I’m guessing that lr1-yakmwafp-a-be-17 is in Yakima Washington, and google-

sttlwawb-a is in Seattle Washington, but these are just educated guesses.

Another thing to note about the tracert output is that many routers on the Internet are configured

not to respond to ICMP packets. When tracert encounters one of these routers, it will display an

asterisk (*) in place of the RTT value for that router. This can make it difficult to pinpoint the exact

location of the problem.

If you’re having problems connecting to the Internet and use tracert as a diagnostic tool, it can be

difficult to pinpoint the problem if the problematic router lies outside your network. If the problem

with your connection is caused by a router within your LAN, then tracert will be able to identify it

and provide valuable information for troubleshooting. However, if the problem is caused by a router

outside of your LAN, then the results from tracert may not be as helpful, especially if the router

doesn’t respond to the ICMP requests. So, while the bad news may be that you can’t connect to the

Internet because someone else’s router is having problems, the good news is that it’s someone

else’s router having problems, not your router. And, typically these types of router issues will be

fixed relatively quickly as they will eimpact many different networks and users, and there will be lots

of unhappy people notifying the router owner of the problem.

80

There are a few different versions of the tracert tool that you can run on Windows There’s the

command line version, or you can download and run a version with a graphical user interface (GUI),

or you can find online versions of traceroute, although most online tools show the route back from

their web site to a DNS name you provide as opposed to showing the route from your computer to

their web site. The GUI based tools are nice because they may have extra features, like showing you

where each router is located on a map.

As you troubleshoot network connections, here are a few other things you should keep in mind, and

may have to check:

1. Check for any recent changes or updates that could have caused the issue.

2. Disable any firewalls or antivirus software temporarily to see if they are blocking the connection.

3. Check for any known issues or outages with the network or specific websites/services being

accessed.

Network Layer and IP Basics – Summary

This wraps up our tour of the basics of the Network Layer of the OSI Network Model, and the Internet

Protocol. During this initial look at these items, you learned the following:

1. The Network Layer is responsible for end-to-end delivery of network packets, as opposed to

point-to-point delivery which is done by the Data Link Layer.

2. The main protocol used at the Network Layer is the Internet Protocol, which defines several

things including the format of IP packets, and IP addresses and netmasks.

3. IANA is the group responsible for the overall management of IP addresses, but you will most

likely receive an IP address from your ISP.

4. IP addresses are built from 4 octets, with each octet ranging from 0 to 255.

5. An IP address describes two things, a network, and a host number on that network. The

netmask is used to determine how to divide and read an IP address.

6. Every computer or device that uses IP must be configured with the IP address of a default

gateway/router, which will handle transmitting packets to other network segments.

81

7. The DNS system consists of many servers whose main role is to resolve DNS names to IP

addresses. Every computer on an IP network must be configured with the IP address of a

primary and secondary DNS server.

8. Configuring IP on a computer requires setting the IP address, netmask, default gateway/router

IP address, and IP addresses of the primary and secondary DNS servers. This configuration can

be done manually but is typically done with DHCP.

9. Using DHCP requires setting up a server that will manage and distribute the IP settings for

devices on a network.

IP Packet Details

Now that you have a basic understanding of the components used by the Network Layer and the

Internet Protocol, and how these components work together to build and deliver network packets, it’s

time to loop back around and take a deeper dive into the components. The first thing we’ll look at is the

IP packet format, and all the fields in the IP packet header. Note that it isn’t critical that you know this

information unless you end up working as a network administrator or plan on taking a certification

exam.

Here are the fields in the header, along with a description of what the field contains:

Version (4 bits) - This field indicates the version of the IP protocol being used. This can be 4 or 6, but if

it’s 6 the rest of the header fields will be different than what’s listed here.

Header Length (4 bits) - This field indicates the length of the IP packet header in 32-bit words. This field

is necessary because the length of the IP packet header can vary because there are a few optional items

82

that may or may not be included in fields at the end of the header. If the options field is not present, the

header length will be fixed at 20 bytes. However, if options are included, the header length will increase

in multiples of 4 bytes, up to a maximum of 60 bytes.

Type of Service (TOS) (8 bits) - This field was meant to be used to indicate the priority and type of

service requested for the packet. The TOS field was later replaced by the Differentiated Services

(DiffServ) field in IPv4, and the Traffic Class field in IPv6, and most routers ignore the TOS information, so

its use is limited and it’s not a reliable means of specifying QoS for IP packets in modern networks.

The TOS field is divided into two subfields: the Precedence subfield and the TOS bits subfield. The

Precedence subfield is a 3-bit field that is used to specify the priority of the packet. The TOS bits subfield

is a 5-bit field that is used to specify the type of service required by the packet, such as low delay, high

throughput, or high reliability.

In practice, the TOS field is not widely used and is often ignored by routers. This is because routers

primarily use the destination IP address and the protocol type (TCP, UDP, etc.) to determine how to

handle a packet. Additionally, modern networks typically use QoS mechanisms such as DiffServ and

traffic shaping to prioritize traffic, rather than relying on the TOS field. However, some legacy networks

may still make use of the TOS field for QoS purposes.

Total Length (16 bits) - The Total Length field in an IPv4 header is a 16-bit field that specifies the total

length of the IP packet in bytes, including both the header and data sections. The minimum value for the

Total Length field is 20 bytes, which corresponds to a packet with no data, only the IP header. The

maximum value for the Total Length field is 65,535 bytes, which is the maximum size of an IP packet.

Identification (16 bits) - This field is a number that’s used to identify fragments of an original packet.

When a packet is too large to be sent in a single transmission, it must be divided into smaller fragments

that can be reassembled at the destination. The identification field is set to a unique value for each

original packet, and all fragments of that packet will have the same value in this field, which tells the

recipient they’re all part of the same fragmented packet. The receiving device will use this information

to reassemble the fragments, also using the Fragment Offset field (see below), to assemble them in the

correct order.

83

The identification field has a minimum value of 0 and a maximum value of 65,535. When the maximum

value is reached, the value wraps around to 0 and continues counting.

Flags (3 bits) - This field is used to indicate whether the packet can be fragmented or not by the routers

as they forward the packet. Some routers and network links use a smaller Maximum Transmission Unit

(MTU), so this field is used to tell them whether the packet can be fragmented, or if the router should

just return an error if it can only transmit the packet by breaking it up.

The three bits in this field are:

Reserved: This is always set to zero.

Don't Fragment (DF): If this bit is set to 1, it indicates that the packet should not be fragmented.

If a router receives a packet with the DF flag set and the packet needs to be fragmented to be

forwarded, the router will drop the packet and send an ICMP "Destination Unreachable:

Fragmentation Needed" message back to the sender. This message includes the MTU of the next

hop, so the sender can reduce the size of the packet before sending it again.

More Fragments (MF): If this bit is set to 1, it indicates that there are more fragments to follow.

If this bit is set to 0, it indicates that this is the last fragment.

Fragment Offset (13 bits) - This field is used along with the identification and Flag fields to determine

the position of the current packet within the original packet and reassemble the fragments of the

original packet. Here's an example of using the fragment offset field in an IPv4 header:

Suppose that a sender has a large data packet to send to a receiver, but the packet is too large to be

sent in a single transmission unit. The sender can break up the packet into smaller fragments, each with

its own IP header. The first fragment will have a "more fragments" flag set to 1, indicating that there are

more fragments to follow. Each fragment, except the last one, will have a "fragment offset" field

indicating the position of that fragment within the original packet. The offset is specified in units of 8

84

bytes, so if the first fragment is 1500 bytes long, the fragment offset of the second fragment would be

1500/8 = 187.5, rounded down to 187.

When the receiver receives the fragments, it will use the identification field in the IP header to identify

which fragments belong to the same original packet. The receiver will then use the fragment offset fields

to reconstruct the original packet by concatenating the fragments in the correct order. The last packet

sent will have the "more fragments" flag set to 0 to indicate that this is the last fragment.

Time to Live (TTL) (8 bits) - This field is used to limit the lifetime of a packet. This is necessary because

it’s possible for packets to get “lost” and wander in circles between routers. The number of hops a

packet can make is limited by the TTL field, with each router subtracting one from the TTL as it moves

the packet from one network to the next. The TTL field is typically set to 64 and decremented by one by

each router that processes the packet, and the packet is discarded if the TTL field reaches zero.

Protocol (8 bits) - This field indicates the protocol used in the data portion of the IP packet. Common

protocol values include TCP, UDP, ICMP, and IGMP. You’ll learn more about TCP, UDP, and IGMP in later

sections.

Header Checksum (16 bits): This field is used to detect errors in the IP packet header. The checksum is

calculated over the entire IP packet header, and if any errors are detected the packet is discarded.

It is calculated by taking the 16-bit one's complement of the one's complement sum of all the 16-bit

words in the header, with the checksum field itself being set to zero before the calculation is performed.

To calculate the checksum, the header is first divided into 16-bit words, and then the sum of all these

words is computed, including any carryover from the most significant bit of the previous addition. Once

the sum has been computed, the one's complement of the result is taken, and this value is used as the

checksum value.

When the packet arrives at the destination, the same calculation is performed on the received packet

header, and the calculated checksum is compared with the value in the header. If the two values match

then the header is considered valid, and the packet is forwarded. If the checksums don’t match, the

packet is discarded.

85

The reason why a checksum is used in the IPv4 header instead of a hash is that a checksum can be

computed quickly, with relatively low computational overhead. A hash function, on the other hand, is

typically more computationally expensive to compute and would slow down the packet processing.

Source IP Address (32 bits) - This field contains the IP address of the sender of the packet.

Destination IP Address (32 bits) - This field contains the IP address of the intended recipient of the

packet. Normally IP packets are sent to a single IP address, in which case we call the transmission a

unicast. But there are also ways to send IP packets to multiple devices using something called

broadcasts, and multicasts. In IPv4, there are two special addresses that can be used in the destination

field for multicast or broadcast:

Broadcast Address: The broadcast address is used to send a packet to all hosts on a particular

network segment. The IPv4 broadcast address is typically the highest address in the subnet,

where all host bits are set to 1. For example, in a subnet with a netmask of 255.255.255.0, the

broadcast address would be 192.168.1.255.

Multicast Address: The multicast address is used to send a packet to a group of hosts that

belong to a specific multicast group. The IPv4 multicast address range is from 224.0.0.0 to

239.255.255.255 and is divided into two parts: well-known multicast addresses and dynamically

allocated multicast addresses. Well-known multicast addresses are reserved for specific

purposes, such as routing protocols, while dynamically allocated multicast addresses are

assigned as needed by applications.

Options (variable length) - This field is used to provide additional information about the IP packet.

Options are rarely used, but they can include things like security-related information or hints for routers.

If included, each option has a two-byte "Option Type" field that identifies the type of option and a one-

byte "Option Length" field that specifies the length of the option in bytes. The remainder of the option

field contains the actual option data.

Some examples of options that can be included in the options field include:

86

"Timestamp": This option includes a timestamp that can be used to measure the round-trip time

of packets.

"Record Route": This option instructs routers to record their IP addresses in the packet as it

passes through them, allowing the sender to trace the route the packet took.

"Security": This option provides security-related information about the packet.

"Strict Source Route": This option specifies a strict path that the packet must follow through the

network, allowing the sender to specify the exact route that the packet should take.

Note that the options field is not commonly used in typical IPv4 traffic, and its use is generally limited to

specialized applications or situations where additional information or control over the routing of packets

is needed.

IP Address Details - How are IP Addresses Assigned

Now let’s return and look at the details of IP addresses. We’ll start by looking at how IP addresses are

assigned. Any computer that wants to communicate on the Internet needs an IP address, but if you want

an IP address, or a block of IP addresses, where do you go to get them?

There are two ways or three ways that IP Addresses are assigned. Like phone numbers, you can’t just

make them up, otherwise there would be the possibility of two devices having the same IP address, and

for the Internet to function each device must have a unique address. The process for getting an IP

address is a little like getting a phone number. That is, when you buy a new phone, you also need to get

a phone number from whichever phone company you select. They will assign you a phone number from

their pool of available numbers.

When you connect a computer to the Internet, that computer will be assigned an IP address by the

network provider. For home networks and smaller businesses, the network provider is typically an ISP.

Larger businesses and organizations will typically connect to the network run by a parent organization.

87

For example, CBC connects to a network called the K20 network, which is run by the state of

Washington, so the college receives their bucket of IP addresses from K20 network admins. Large

companies like Microsoft or Boeing will also have a hierarchical network structure, where the company

gets a block of IP addresses, which it then subdivides to its networks in different subsidiaries and

locations. So, no matter what the situation you will get your IP address(es) from someone above you in

the network hierarchy.

But where does your ISP or the person in charge of a large network get their block of addresses? The

group in charge of handing out IP addresses is the IANA or Internet Assigned Numbers Authority. The

IANA has the responsibility for managing the overall IP address pool, but they farm out the job of

actually assigning numbers to groups called the Regional Internet Registries (RIRs)10. The RIRs are groups

within a geographic region that have been given large blocks of IP addresses to distribute by the IANA. If

you’re a large company or organization that needs a large number of IP addresses to connect computers

and devices to the Internet, you must submit an application to one of the RIRs. The number of available

IP address blocks is limited, so the RIRs won’t hand them out to just anyone. Before assigning a block of

addresses the RIR will perform some background checks to authenticate your organization and your

need for the addresses, as well as ensure that your organization has met the technical requirements for

connecting your network to the Internet.

10 https://www.internetsociety.org/resources/deploy360/2015/short-guide-ip-addressing/

Map of Regional Internet Registries (RIRs)

88

IP Address Details – Address Blocks

If your organization is approved, the RIR will assign your company a block of addresses11. The block will

be one of three sizes, small, medium and large, or tall, grande, or venti for you caffeine aficionados and

addicts. The IANA block sizes are called Class A, which is large, Class B, which is medium, and Class C,

which is small. Note that Class A, B, and C addresses are now often referred to as legacy address classes,

as the current approach to IP addressing is based on a different scheme called Classless Inter-Domain

Routing (CIDR).

If you are assigned a Class A block of addresses, the network number will be between 1.0.0.0 and

127.0.0.0. For example, any network that starts with 3.0.0.0 or 67.0.0.0 would be part of a Class A block

of IP addresses. Notice that there are only 126 Class A blocks.

The organization that’s assigned the Class A block can subdivide it using netmasks any way they wish

using a process called subnetting. And anyone that receives a Class A block will certainly use subnets,

because if they use the default subnet mask of 255.0.0.0, they will have a single network segment with

~16.7 million devices on the same segment and all these devices will be in the same collision domain.

As an example of subnetting, say you are assigned 67.0.0.0. You can use the subnet mask 255.255.0.0

and hand out network numbers 67.0.0.0 through 67.255.0.0 to the LAN administrators in your

organization. This would allow each LAN administrator to either build a single network segment with

65534 hosts, or the LAN administrator could also use netmasks to further subdivide the network

address. For example, say you’ve been assigned the network number 67.143.0.0. You could hand out

11 https://www.meridianoutpost.com/resources/articles/IP-classes.php

 Start End Subnet Mask # of Networks # of Hosts

Class A 1.0.0.0 127.0.0.0 255.0.0.0 126 16,777,214

Class B 128.0.0.0 191.255.0.0 255.255.0.0 16,382 65,534

Class C 192.0.0.0 223.255.255.0 255.255.255.0 2,097,150 254

Table showing Class A, B, and C network blocks, and the associated network addresses.

89

network numbers 67.143.0.0. through 67.143.255.0. In other words, you could build 255 networks with

254 hosts on each network, which is much more practical solution.

If you are assigned a Class B block of addresses, the network number will be between 128.0.0.0 and

191.255.0.0. For example, any network that starts with 132.86.0.0 or 177.1.0.0 would be part of a Class

B block of IP addresses. Notice that there are 16,382 Class B blocks, and each block can hold a maximum

of 65534 hosts. Like Class A blocks, Class B blocks are typically subdivided into multiple network

numbers. For example, if you used a netmask of 255.255.255.0 with a Class B block of address, it would

result in 255 network numbers, with a max of 254 host per network segment, which is once again a

much more practical use of the block addresses.

If you are assigned a Class C block of addresses, the network number will be between 192.0.0.0 and

223.255.255.0. For example, any network that starts with 197.0.14.0 or 223.12.10.0 would be part of a

Class C block of IP addresses. Notice that there are 2,097,150 Class C blocks, and each block can hold a

maximum of 254 hosts. You can also subdivide a Class C block using netmasks, but you’ll have to use

advanced netmasks which you’ll learn about below.

You may have noticed that there are some network addresses that aren’t assigned in any of the blocks.

There are certain network numbers in each block that are called private network numbers or non-

routable network numbers. These network numbers are called private or non-routable because if a

router is sent a packet with one of these addresses it will drop it. This means the private addresses can

be used on a local network segment, but they’ll never be able to reach another network segment or the

Internet. This might seem a little weird, but it’s actually a great feature that’s made it possible to extend

the life of IPv4. You’ll learn all about this in a minute as it’s a key feature of modern-day networking.

Here are the three blocks of private IP addresses in IPv4:

10.0.0.0 - 10.255.255.255

172.16.0.0 - 172.31.255.255

192.168.0.0 - 192.168.255.255

90

The IP address 127.0.0.1 is also not assigned as part of a block, because as you learned this is known as

the loopback address, and it is reserved for the internal loopback function of a computer's network

interface.

In the olden days, when the Internet was first starting, it was relatively easy to get a Class B or Class C

network number. When I worked at Hanford in the 1980s and 1990s, I was able to get two Class B

networks, and PNNL also had two class B networks. Since then, Hanford and PNNL returned at least one

of the Class B network numbers each, and they may have returned more. You’ll learn how they were

able to do this and still connect computers to the Internet in a minute when you learn about Private IP

Addresses.

Today, it’s nearly impossible to get a block of addresses from IANA and RIRs, especially a Class A or Class

B block. But even though you can’t go directly to IANA or an RIR and get a block of addresses, you can

get an IP address or set of addresses. You’ll just get them from your ISP or upstream network provider.

IP Address Details – Private or Non-Routable IP Addresses

When the Internet first started the designers planned for growth and thought that having over 4 billion

IP addresses would be more than enough. But, as the popularity of the Internet surged, and more and

more devices needed an IP address it seemed like 4 billion wasn’t going to be nearly enough. One of the

problems was the sheer number of devices that wanted to connect and needed IP addresses, and

another problem was that since IP addresses are handed out in large blocks there were many addresses

that ended up being “wasted”. That is, if an organization received a Class B block of 65535 addresses,

but only needed 30,000, the remaining 35,000 would not be used, which was a huge waste of numbers.

The number of available addresses started to shrink at the same time that the demand was rapidly

growing, forcing the IETF to look for solutions. They came up with two, the first of which was create a

new version of IP and increase the size of the IP address, from 4 numbers to 6 numbers. This new

address version was introduced in 1998 and is called IPv612. While some systems use IPv6, at this point

in time IPv4 is still more commonly used. Even though IPv6 was released decades ago there’s been a

12 http://www.steves-internet-guide.com/ipv6-guide/

91

huge lag in adoption. The reason for the delay is that another process, the use of private or non-routable

IP addresses, freed up a huge percentage of the IPv4 address pool.

Here are a couple of last notes about IPv6 before we start on non-routable addresses. The first thing is

that at this point if someone is talking about IP addresses and doesn’t specify a version, they’re probably

talking about IPv4 because it is still by far the most commonly used. If someone is talking about IPv6,

they will spell it out, but if they just say IP address, they are most likely referring to IPv4. The second is

that IPv4 was designed in the 1970s13, and while the design has proven to be great, by the 1990s it was

possible to see areas that could be improved. So, in addition to creating a larger address pool, IPv6

makes some other technical improvements14 to increase the overall performance. You’ll learn more

about IPv6 later in the class, but for now we want to concentrate on non-routable IP addresses as they

are used everywhere, including your home network.

The first thing we need to do is define what a non-routable IP address is. As the name states, a non-

routable address is an IP address that will not pass through a router. When a router sees a network

packet where the destination IP address is a non-routable IP address, it will drop the packet. Non-

routable IP addresses can be used to send packets to other devices on the same network segment,

including the default gateway/router, but they’ll never be passed outside of the local network segment.

It's important to note that you can still send packets to the default gateway using non-routable IP

addresses. You’ll see why this is important in a minute.

Non-routable IP addresses are used for building private networks. By private network, we mean a

network that may be connected to the Internet, but the devices on the network can’t be seen by any

devices outside the network. And by outside the network we mean any devices on the non-LAN side of

the router. For your home network and most small networks, outside the network means any device on

the Internet.

You can think of a private network as something like a secret military base. The base has streets and

buildings, and the buildings have street addresses like normal buildings. People inside the base can send

13 https://www.geeksforgeeks.org/history-of-tcp-ip/
14 https://www.tutorialspoint.com/ipv6/ipv6_address_types.htm

92

mail to each other by using the street addresses, but no one outside the base knows anything about the

base layout. They don't know the street names or building addresses, they don’t even know what streets

or buildings exist.

This is what happens with most home networks, and many intranets for larger businesses and

organizations. If you look at the IP addresses assigned to the devices on your home network or almost

any home network, you’ll see that they almost certainly start with 192.168. You’ll also see IP addresses

that start with 192.168 on almost all the computers at CBC, and IP addresses that start with 172.16 or

192.168 on most computers and devices connected to a network that’s connected to the Internet.

But how is this possible? After all, isn’t it a requirement for every computer and device connected to the

Internet to have a unique IP address? Here’s how the non-routable addresses have been implemented

and how most network connections are made today. This is made possible through a system called

Network Address Translation or NAT, which runs on the LAN routers or your home router.

The NAT system acts like the mailroom workers at the secret military base. Anytime someone wants to

send mail to the outside world, they first send it to the mailroom. The workers in the mailroom write

down some data about your message, mainly your address as the original sender, and the address

you're sending the message to. They then take the message out the envelope you used and place it in a

new envelope. When they address the new envelope they use the original recipient address, but they

use the address for the base mail room as the sender’s address.

They send your message in their new envelope to your original recipient. The recipient receives your

message, and when they address their reply, they look at the envelope they got the message in and see

that it came from the base mail room, so they send their message back to the base mail room address.

In fact, they have no idea what your real address is, since it’s nowhere on the envelope the message

came in. They send their reply, and since it’s sent to the base mail room when it arrives it’s delivered to

the mail room. The mail room inspects their list and sees that it’s a response to a message you sent.

They take the message out its envelope and place it in a new envelope with your address on the secret

base as the recipient address. The process that the mail room uses, keeping lists of outbound mail,

changing envelopes and addresses, and using their lists to forward incoming mail is known as address

translation.

93

This system has a couple of benefits. The first is increased privacy, since any mail that is sent out from

the base looks like it’s coming from a single address and no one on the outside world can gather any

new information about the buildings on the base by looking at the sender’s address. The second is that

addresses inside the base can be exact duplicates of addresses on other bases as these private

addresses are never seen by anyone outside of the base.

On a network the address translation works the same way as the mail room process, with the LAN

router doing the translation. Let’s use a home network for a walk through, but the process will be the

same for a LAN run by any organization. When you connect your home network to your ISP one of the

first things that happens is your router sends a signal to the ISP saying it’s ready to go to work by

sending out a DHCP request. Your ISP will then assign an IP address to your router from its pool of

available addresses. The following figure shows the IP configuration for a wireless router which is

connected to the ISP CenturyLink, and CenturyLink assigned the wireless router the address

71.223.54.169.

If we look at the devices connected to the wireless router, we can see that they’ve all been assigned

addresses that start with 192.168.0 which is the Class C non-routable network number. Almost all home

routers also act as DHCP servers, which is how each device on this network got its IP address. That is,

when the device connected to the wireless network, the device also sent a DHCP request, and the

router, acting as a DHCP server assigned the device their IP address, netmask, default gateway address,

and DNS server addresses.

94

Whenever a device on the home LAN sends a network packet to the Internet, the packet will be grabbed

by the router. For example, let’s say the computer with the IP address 192.168.0.103 wants to view a

web page at google.com. The computer builds the network packet asking for the web page, using

Google’s IP address as the destination IP and 192.168.0.103 as the sender’s IP address.

95

The computer then uses the netmask and determines that google.com is on a different network

segment, so it builds an ethernet frame, places the IP packet in the data section of the ethernet frame,

and addresses the frame to the default gateway’s MAC address, which in this case the wireless router.

The home router unpacks the ethernet frame, sees the network packet, and knows it needs to route it

upstream to get it to google.com. But before the router forwards the network packet it will run the NAT

process and record some data about your network packet. The router will record your device’s IP

address as the original sender, and the IP address of the device the packets are being sent to. The router

will then build a new network packet sending it to the original recipient IP address but changing the

sender’s address to the “outside” address used by the router, in this case 71.223.54.169. The following

figure shows an example NAT table, used by the router to keep track of outgoing network packets.

When Google gets the network packet, it will build a response and send it back to 71.223.54.169 which

is the IP address of your router. When router receives any network packets from its external interface, it

inspects its NAT list to see which device made the original request. In this case the router sees that this

packet is a response to the request you sent to Google. To get the network packets back to your

computer, when the router receives the packet it extracts the data, then builds a new network packet,

96

placing the data from Google inside the new packet, and using your computer’s IP address as the

recipient address.

Since your IP address isn’t in the IP packet sent to google, google.com and any other routers that

forwarded the network packets won’t know that the packet actually came from your computer or your

computer’s IP address. This keeps the IP addresses of all the devices on your network private and hidden

from the outside world.

Besides keeping your internal IP addresses private, using non-routable addresses has another huge

benefit. Most devices on local network segments can use private addresses, and the only device on a

network segment that needs a “real” IP address is the default gateway. This frees up almost all of the

IPv4 addresses that were previously being used by devices on local network segments, which has greatly

extended the life and usefulness of IPv4.

IP Address Details – Advanced Subnetting & Netmasks

Now let’s turn our attention to netmasks and advanced subnetting. Let’s start by doing a quick review of

why a network administrator would choose to sub-divide a network number. This is done to make

network numbers more flexible, make more efficient use of the IP addresses available for a given

network number, and at the same time reduce the number of devices in a collision domain, especially

for organizations that received large blocks of IP addresses. That is, say you were an organization and

receive a Class B block of addresses that use the network number 131.27.0.0. This means that you have

all the IP addresses between 131.27.0.1 and 131.27.255.254, or 65534 IP addresses you can assign to

devices on your network. But you certainly don’t want all 65534 devices to be connected to the same

LAN because this would require that all the devices be connected to the same network segment or

plugged into the same router because this would be physically impossible. And all the devices would be

in the same ethernet collision domain, which means there would be a lot of contention for the network

media, lots of collisions, which would cause lots of delay for network traffic.

So instead of having one large network, you’ll probably want to subdivide your network using the

netmask. There are three types of netmasks, that I’m going to call simple netmasks, binary netmasks,

and complex binary netmasks.

97

The simple netmasks are the ones that you’ve already learned about, where the bits in an octet are

either set to all 1s or all 0s. These consist of 255.0.0.0, 255.255.0.0 and 255.255.255.0. These netmasks

make it really easy find the network portion of an IP address because it will consist of an entire octet.

The binary netmasks and complex binary netmasks are netmasks that require using binary numbers to

determine the network and host portions of each address. They’re used like super simple netmasks,

where the 1 bits in the netmask designate the network, but the numbers in the octets won’t be 255.

These types of netmasks aren’t as easy for humans to use because you have to write the netmask in

binary, but they provided added versatility and more efficient use of IP addresses. For example, even a

class C subnet mask of 255.255.255.0 is not very efficient as it only allows 1 network with 254 hosts, and

this is a large number of devices to connect to a single network segment and a large number of devices

in a single collision domain. With a binary netmask you could subdivide this into two networks, or 4

networks, and with a complex binary netmask you could subdivide it into 5 networks.

Here are some examples of binary netmasks that will illustrate what they look like and how they’re

used.

Binary Netmask - Example 1
Let’s start with an example of subnetting the class C address 212.13.177.0, dividing it into two subnets.

To do this we’ll use a netmask of 255.255.255.128. The first step to understanding what’s going on with

this netmask is to write it out in binary. In this case the binary netmask is:

11111111.11111111.11111111.10000000

To use this to divide an IP address into the network portion and the host portion, find all the bits that

are set to 1. The bits that are set to 1 represent the network portion, and the bits that are set to 0

represent the host portion.

98

Now let’s look at using this netmask to decide if two IP addresses, 212.13.177.14 and 212.13.177.134,

are on the same network segment or not. The first step is to write each address in binary, then we’ll

compare the network portion of the addresses to determine if they’re on the same subnet or not.

212.13.177.14 = 11010100.00001101.10110001.00001110

212.13.177.134 = 11010100.00001101.10110001.10000110

When we apply the netmask to each number, we can skip the first three octets because they’re

obviously the same. I’m going to write the last octet of binary numbers for the netmask and both IP

addresses on subsequent lines to make it easy to see the network bits, and if they match or not.

Netmask: 10000000

IP 1: 00001110

IP 2: 10000110

In this case the two IP addresses are on different networks as IP address 1 has a 0 in the network portion

and IP address 2 has a 1.

Now let’s check the two IP addresses 212.13.177.14 and 212.13.177.68. These numbers in binary are:

212.13.177.14 = 11010100.00001101.10110001.00001110

212.13.177.68 = 11010100.00001101.10110001.01000100

You might be able to see the answer already, but let’s write out the last octet of the netmask and the

two IP addresses to make it crystal clear.

Netmask: 10000000

IP 1: 00001110

IP 2: 00000100

99

In this case the two IP addresses are on the same network as IP address 1 has a 0 in the network portion

and IP address 2 also has a 0.

The next thing to see is how many networks and how many hosts per network we can achieve with this

netmask. In this case, the network bit can be set to 0 or 1, which means that we can only have two

different (sub) networks. For the number of hosts per network, we have 7 bits to work with. This means

that we can have 27 or 128 total addresses per network. But we don’t use 0 because this represents the

network, and we don’t use all 1’s, or 127 because this is the broadcast address. Subtracting these two

possible host values leaves 128-2 or 126 possible hosts.

Binary Netmask - Example 2
Let’s do another example of subnetting the class C address 212.13.177.0, this time dividing it into four

subnets. To do this we’ll use a netmask of 255.255.255.192. In this case the binary netmask is:

11111111.11111111.11111111.11000000

Notice that this is just like the 255.255.255.168 netmask, it just has one more 1 bit. Once again, to use

this to divide an IP address into the network portion and the host portion, find all the bits that are set to

1. The bits that are set to 1 represent the network portion, and the bits that are set to 0 represent the

host portion.

Now let’s look at using this netmask to decide if two IP addresses, 212.13.177.10 and 212.13.177.234,

are on the same network segment or not. The first step is to write each address in binary, then we’ll

compare the network portion of the addresses to determine if they’re on the same subnet or not.

212.13.177.10 = 11010100.00001101.10110001.00001010

212.13.177.134 = 11010100.00001101.10110001.11101010

Once again, once you write the IP addresses in binary the answer is probably clear, but let’s complete

the process by writing the last octet of the netmask and the two IP addresses to check. I’m going to skip

100

the first three octets because they’re still the same, and only write the last octet of binary numbers for

the netmask and both IP addresses on subsequent lines to make it easy to compare the network bits.

Netmask: 10000000

IP 1: 00001010

IP 2: 11101010

In this case the two IP addresses are on different networks as IP address 1 has a 00 in the network

portion while the network bits in IP address 2 are 11.

Now let’s check the two IP addresses 212.13.177.14 and 212.13.177.33. These numbers in binary are:

212.13.177.14 = 11010100.00001101.10110001.00001110

212.13.177.68 = 11010100.00001101.10110001.00100001

You might be able to see the answer already, but let’s write out the last octet of the netmask and the

two IP addresses to make it crystal clear.

Netmask: 10000000

IP 1: 00001110

IP 2: 00100001

In this case the two IP addresses are on the same network as both IP addresses have a 00 in the network

portion.

The next thing to see is how many networks and how many hosts per network we can achieve with this

netmask. In this case, the network bit can be set from to 00 to 11, which means that we can only have

four different (sub) networks. For the number of hosts per network, we have 6 bits to work with. This

means that we can have 26 or 64 total addresses per network. But we don’t use 0 because this

represents the network, and we don’t use all 1’s, or 63 because this is the broadcast address.

Subtracting these two possible host values leaves 64-2 or 62 possible hosts.

101

As you can see, each time we add a bit to the network portion of the netmask, we subtract a bit from

the host portion. Adding bits to the network portion allows for more possible networks, but fewer hosts

on each network. The following table shows the possible values for the binary netmasks for subnetting a

Class C network, along with the number of network addresses and the possible number of hosts and

number of usable hosts per network. Note that you’d never use the last two netmasks as they don’t

have any usable host numbers.

You could also use this process to subnet a Class B or Class A network using a binary netmask. I’m not

going to cover the process here as the idea is impractical. That is, there are good reasons to make

subnet to create more networks, even if they have fewer hosts per network. But there’s not a good

reason to take a Class B or Class A network and create subnets with 500 or more hosts per network.

We’ll go through one example of using a binary netmask on a Class B address, but we’re not going to

look at every possible netmask. The only time I suggest you go through the exercise of using binary

subnet masks on Class B or Class A networks is if you’re planning on taking a certification exam on

networking like the Cisco CCNA or CompTIA Network+.

Subnet Mask

Binary

Netmask

(Last Octet) Networks Hosts

Usable

Hosts

Broadcast

Address CIDR

255.255.255.0 00000000 1 256 254 0.0.0.255 /24

255.255.255.128 10000000 2 128 126 0.0.0.127 /25

255.255.255.192 11000000 4 64 62 0.0.0.63 /26

255.255.255.224 11100000 8 32 30 0.0.0.31 /27

255.255.255.240 11110000 16 16 14 0.0.0.15 /28

255.255.255.248 11111000 32 8 6 0.0.0.7 /29

255.255.255.252 11111100 64 4 2 0.0.0.3 /30

255.255.255.254 11111110 128 2 0 0.0.0.1 /31

255.255.255.255 11111111 256 0 0 0.0.0.0 /32

102

Binary Netmask - Example 3
Here’s an example of subnetting the class B address 155.13.0.0 using a netmask of 255.255.254.0. In this

case the binary netmask is:

11111111.11111111.11111110.00000000

Notice that this is much like the 255.255.255.0 netmask, it just has one less 1 bit. Like always, to use this

to divide an IP address into the network portion and the host portion, we need to first find all the bits

that are set to 1 as they will represent the network portion, while the bits that are set to 0 represent the

host portion.

Now let’s apply this netmask to decide if two IP addresses, 155.13.8.10 and 155.13.177.199, are on the

same network segment or not. The first step is to write each address in binary, then we’ll compare the

network portion of the addresses to determine if they’re on the same subnet or not.

155.13.8.10 = 10011011.00001101.00001000.00001010

155.13.177.199 = 10011011.00001101.10110001.11000111

Once again, once you write the IP addresses in binary the answer is probably clear, but let’s complete

the process by writing the third octet of the netmask and the two IP addresses to check. I’m going to

skip the first two octets because they’re obviously the same for both IP addresses, and also skip the last

octet since it’s all host bits. This means we’ll only write the third octet of binary numbers for the

netmask and both IP addresses on subsequent lines to make it easy to compare the network bits.

Netmask: 11111110

IP 1: 00001000

IP 2: 10110001

103

In this case the two IP addresses are on different networks as the network portions of the IP addresses

are different.

The next thing to see is how many networks and how many hosts per network we can achieve with this

netmask. In this case, the network bit can be set with 7 bits which means that we have 27 or 128 (sub)

networks. For the number of hosts per network, we now have 9 bits to work with, 1 from the third octet

plus the 8 from the fourth octet. This means that we can have 29 or 512 total addresses per network. But

we don’t use 0 because this represents the network, and we don’t use all 1’s because this is the

broadcast address. Subtracting these two possible host values leaves 512-2 or 510 possible hosts.

Complex Binary Subnet Masks
If you’re liking counting in binary, then you’re now in for a treat as we look at complex subnet masks. If

you’re not digging binary, you might not like this part so much. But keep in mind you won’t need to

know this unless you work as a network administrator or want to try a certification exam. So far, the

netmasks we’ve looked at, both the simple netmasks and the binary netmasks have had a solid row of

either 255’s or 1’s if we’re counting in binary. In technical terms we describe the bits in these numbers

as being contiguous, which means all the 1’s are adjacent without any 0’s between any of the 1’s. I’m

not sure who invented the term contiguous, and sometimes wonder if it came to be when some tech

writer misspelled continuous. In any case, a complex subnet mask is one that has bits set to 1 that are

not contiguous. A complex subnet mask can be used to create a subnet that is not a power of two. For

example, a complex subnet mask of 255.255.255.248 has 29 network bits and 3 host bits. This type of

netmask is extremely versatile, and it can allow a network administrator to make the optimal use of

their pool of IP addresses.

Binary Netmask - Example 4
Here’s an example of subnetting the class C address 212.13.177.0 using the netmask 255.255.255.217.

The first step to understanding what’s going on with this netmask is to write it out in binary. In this case

the binary netmask is:

11111111.11111111.11111111.11011001

104

To use this to divide an IP address into the network portion and the host portion, find all the bits that

are set to 1. The bits that are set to 1 represent the network portion, and the bits that are set to 0

represent the host portion.

Now let’s look at using this netmask to decide if two IP addresses, 212.13.177.14 and 212.13.177.134,

are on the same network segment or not. The first step is to write each address in binary, then we’ll

compare the network portion of the addresses to determine if they’re on the same subnet or not.

212.13.177.14 = 11010100.00001101.10110001.00001110

212.13.177.134 = 11010100.00001101.10110001.10000110

When we apply the netmask to each number, we can skip the first three octets because they’re

obviously the same. I’m going to write the last octet of binary numbers for the netmask and both IP

addresses on subsequent lines to make it easy to see the network bits, and if they match or not.

Netmask: 11011001

IP 1: 00001110

IP 2: 10000110

In this case the two IP addresses are on different networks as the network bits in the IP addresses are

different.

Now let’s check the two IP addresses 212.13.177.78 and 212.13.177.108. These numbers in binary are:

212.13.177.14 = 11010100.00001101.10110001.01001110

212.13.177.68 = 11010100.00001101.10110001.01101100

105

You might be able to see the answer already, but let’s write out the last octet of the netmask and the

two IP addresses to make it crystal clear.

Netmask: 11011001

IP 1: 01001110

IP 2: 01101100

In this case the two IP addresses are on the same network as they have identical bits in their respective

network portions.

DNS Basics

Another important component used by the Network Layer is DNS (Domain Name System). DNS is a

protocol combined with a distributed system of servers that are used to translate human-friendly

domain names such as google.com or columbiabasin.edu into IP addresses. DNS provides humans with a

way to use the names of web sites and network devices instead of trying to remember IP addresses

when we want to send email or browse the web. This is just like remembering someone’s name as

opposed to remembering their phone number. I don’t know about you, but I’d much rather ask my

phone to call Saul than trying to remember that Saul’s phone number is 505-503-4455. But, since the

Network Layer must have IP addresses to build and send IP packets the DNS system is essential to the

functioning of the Network Layer and the Internet.

DNS History
The Domain Name System (DNS) has its roots in the early days of the Internet. In the 1970s, the

ARPANET (the precursor to the Internet) used a central file to map human-readable hostnames to

numerical IP addresses. The file was named HOSTS.TXT and it was maintained by the Stanford Research

Institute (SRI). This file had to be manually updated and distributed to all the computers on ARPANET.

Whenever a new system was added, the computer owner would call SRI and ask them to add the new

computer and the computer’s IP address to the file. This system worked fine in the early days when

there weren’t many computers on the network, but as more and more systems joined ARPANET using a

106

single centralized file became increasingly difficult, and soon it became obvious that a better system was

needed.

In the early 1980s, the need for a more scalable and automated system for resolving domain names to IP

addresses led to the development of the Domain Name System or DNS. John Postel oversaw the

ARPANET list, and he gave the task of selecting a new system to Paul Mockapetris who had to choose

from 5 candidate systems. Mockapetris ended up developing his own system, creating the basic DNS

architecture, and naming conventions that are still used today.

The first actual implementation of Mockapetris’ DNS was created in 1984 by four students at the

University of California, Berkeley, who wrote the Berkeley Internet Name Domain (BIND) software. BIND

quickly became the de facto standard for DNS software and became formalized in 1987 with the

publication of RFC 1035, which defined the structure and operation of the DNS system. In the 1990s

BIND and DNS were also adopted by Microsoft. Since then, DNS has undergone numerous changes and

improvements to address issues such as security and scalability. Today, the DNS system is an essential

part of the Internet infrastructure, consisting of a highly distributed network of servers and caches that

work together to efficiently resolve domain names to IP addresses, enabling users around the world to

access online resources quickly and easily.

DNS Names
You’ve probably been using DNS names your entire life, but just in case you don’t know the basics of

their format here’s a little background information. Each domain name consists of at least two strings

separated by dots, with the rightmost string indicating the top-level domain or TLD. The top-level

domain names are used to categorize domain names based on their purpose or geographic location.

There are two main categories of TLDs, generic top-level domains (gTLDs) and country-code top-level

domains (ccTLDs). The first TLDs were created in 1984 and included seven gTLDs: .com, .edu, .gov, .mil,

.net, .org, and .arpa. Generic top-level domains (gTLDs) are TLDs that are not restricted to a particular

country or region, and are intended for use by individuals, organizations, and businesses worldwide. In

contrast, country-code top-level domains (ccTLDs) are two-letter codes that are assigned to specific

countries or territories, such as .us for the United States, .uk for the United Kingdom, and .de for

Germany.

107

A couple of interesting country codes are .fm which is assigned to the Federated States of Micronesia.

This was a windfall for Micronesia, since they can sell DNS names in this domain to the many FM radio

stations want their DNS name to end in .fm. Similarly .cc is assigned to the Cocos (Keeling) Islands, a

territory of Australia, who can sell DNS names to community colleges, and .tv is assigned to Tuvalu, a

small island nation, which can sell DNS names to television stations and shows that want a DNS name

that end in .tv.

The distinction between gTLDs and ccTLDs is important because it affects how domain names are

registered and used. While gTLDs are available for registration to anyone, ccTLDs may have specific

registration requirements or restrictions based on the country or region they represent.

Up until 1998 the TLDs were managed by the Internet Assigned Numbers Authority (IANA), at which

time management was transferred to the Internet Corporation for Assigned Names and Numbers

(ICANN). ICANN is a non-profit organization that is responsible for managing and coordinating the DNS

system, including the allocation of TLDs. Today, there are hundreds of TLDs, including many new gTLDs

that were added as part of a major expansion of the DNS system in 2013. The expansion of TLDs was

intended to provide greater choice and flexibility for domain name registration, and to support the

growth of the Internet in new regions and industries. The expansion included the addition of hundreds

of new gTLDs, such as .app, .blog, and .club, as well as many new ccTLDs.

How an Organization Gets a DNS Name
The process of obtaining a DNS name involves several steps, blending administrative, technical, and

sometimes legal considerations. Here are the steps:

1. Choose the Domain Name. While this might seem simple it can take some thought as the name

should be relevant to the organization's name, brand, or mission, easy to remember, spell, and

pronounce, and most important is must be available. Quite often an organization’s first choice for a

domain name may already be taken. If it is already taken the organization may try and negotiate

with the current owner to see if they’re willing to sell the name, or the organization can try a

different name.

108

Active Domain Names: 2024 Statistics

As of the end of the fourth quarter of 2024, there were approximately 364.3 million domain name

registrations across all top-level domains (TLDs) worldwide. These figures provide insight into the scope

and scale of the modern internet.

Breakdown by TLD Category

.com and .net TLDs:

- Combined, these two TLDs accounted for 169.0 million registrations.

- .com: 156.3 million

- .net: 12.7 million

Country-Code TLDs (ccTLDs):

- These include domains like .cn (China), .de (Germany), and .uk (United Kingdom).

- Totaling 140.8 million registrations.

New Generic TLDs (ngTLDs):

- Examples include .xyz, .app, and .online.

- With 35.4 million registrations.

Other Legacy Generic TLDs:

- Such as .org, .info, and .biz.

- Comprising 17.3 million registrations.

These figures are sourced from the Domain Name Industry Brief (DNIB) published by VeriSign, which

provides comprehensive statistics on domain name registrations. For the full report, visit:

https://www.dnib.com/articles/the-domain-name-industry-brief-q4-2024

2. Select a Domain Registrar. A domain registrar is a company accredited to sell domain names.

Registrars are accredited through organizations like ICANN (Internet Corporation for Assigned

Names and Numbers) for generic domains or National agencies for country-code domains. Examples

of registrars include GoDaddy, Google Domains, Hover, etc. Choosing a registrar depends on factors

like pricing, customer support, and additional services (like hosting or security)

3. Register the Domain. Once an organization has selected a DNS name and a registrar, they work with

the registrar to make their DNS name official and get it out on the DNS servers on the Internet. Most

https://www.dnib.com/articles/the-domain-name-industry-brief-q4-2024

109

of the registration process consists of filling out administrative information such as the contact

information for the domain owner, a technical contact for the domain, billing info, etc.

4. Configure the DNS Settings. The registrar will then build the DNS records that join or associate the

DNS name with the IP address(es) associated with the name. You can think of these records as being

like database fields, but they’re not in a database, they’re just text entries in a file that’s read by a

DNS server. You can also think of the DNS records as being like phone book entries whose main

purpose is to associate a name with a phone number. The main DNS record is called an A Record,

where A stands for Address. This is the record that associates a DNS name with an IP address. There

are several other types of records including CNAME Records, which are canonical names or

nicknames for a site, and MX Records, which point to the mail server for a site.

5. Load the Records on a DNS server. Once the records are built, they need to be loaded onto a DNS

server. The DNS system is distributed and there isn’t one DNS server that holds all the DNS

information for the entire system. In this distributed system larger organizations will run their own

DNS servers, which would be like maintaining their own section of the phone book. While running a

DNS server isn’t difficult, it does take some work so most smaller organizations or individuals who

use a service like GoDaddy or Google Sites to build their web site will contract with a commercial

DNS server like Cloudflare or AWS Route 53 and have them host their DNS records. In the phone

book analogy, contracting with a commercial DNS server is like adding a phone number to a larger

phone book. Once the DNS Records are loaded on a DNS server it can take several hours for it to

propagate through the DNS system on the Internet and become active.

110

The Domain Name Gold Rush: A Modern Digital Land Grab

In the early days of the internet, the domain name system (DNS)—essentially the address book of

the web—became a new frontier of opportunity. By the mid-1990s, registering a domain cost as

little as $70, and early adopters realized that these virtual addresses could become valuable assets.

Much like staking a gold claim in the 19th century, people began registering domain names they

thought might someday fetch a profit. This speculative era quickly earned the nickname the domain

name gold rush.

Some of the first big domain sales were completely legal and incredibly lucrative. For example,

business.com was originally purchased in the mid-1990s and later sold in 1999 for $7.5 million. It

eventually became a business-to-business search engine and directory. Similarly, beer.com was sold

for $7 million, and vacationrentals.com was purchased for $35 million—reportedly to keep it out of a

competitor's hands (Kinsella).

These cases didn’t involve trademark infringement because the names were either common nouns

or descriptive terms. In this sense, domain names were treated like digital real estate: you could buy

a good location (name) and sell it to the highest bidder.

As the internet grew, opportunists began registering names associated with companies, public

figures, and major brands. The goal was often to sell the name back to the rightful owner for a

profit—a practice that came to be known as cybersquatting.

One of the first and most important legal cases to address this was Panavision Int’l, L.P. v. Toeppen.

Dennis Toeppen, an early cybersquatter, registered panavision.com and offered to sell it back to the

camera company for $13,000. The company refused and sued. In a landmark decision, the Ninth

Circuit ruled that registering a domain name to extract money from a trademark holder diluted the

brand and constituted bad-faith behavior under trademark law (Panavision v. Toeppen).

Toeppen had also registered domains like deltaairlines.com and neiman-marcus.com. This case

became a model for others, demonstrating that U.S. courts were willing to treat domain names as

trademark-sensitive property when used in bad faith.

111

The Domain Name Gold Rush: A Modern Digital Land Grab (Continued)

Another famous case involved Nissan Motor Co. v. Nissan Computer Corp. In this instance, Uzi

Nissan had registered nissan.com for his small business years before the car company attempted to

take control of the domain. The court ruled that while Nissan Motors could not take the domain

away, Uzi Nissan was prohibited from monetizing it through auto-related advertisements that could

confuse consumers (Nissan Motor Co. v. Nissan Computer Corp.).

To combat cybersquatting on a broader scale, two major legal tools were introduced around the

same time:

1. The Anticybersquatting Consumer Protection Act (ACPA), enacted in 1999, allowed trademark

owners to file lawsuits in U.S. courts to recover domain names registered in bad faith. The law

specifically targeted those who registered domains “with a bad faith intent to profit” from someone

else’s trademark (ACPA §1125(d)).

2. The Uniform Domain-Name Dispute-Resolution Policy (UDRP), developed by the Internet

Corporation for Assigned Names and Numbers (ICANN), provided a faster and less expensive way to

resolve disputes. Cases could be brought before arbitrators at organizations like the World

Intellectual Property Organization (WIPO) without going to court. Thousands of domain names have

been transferred through this mechanism.

It wasn’t just businesses that had to defend their names—celebrities also found themselves in

disputes over their identities online. In 2000, the pop star Madonna won a UDRP case against Dan

Parisi, who had registered madonna.com. WIPO ruled that the name was being used in bad faith and

ordered the transfer of the domain to the singer (Madonna v. Parisi).

However, not every celebrity succeeded. Musician Sting, whose legal name is Gordon Sumner, filed a

complaint against a registrant who had owned sting.com for use in online gaming. WIPO ruled

against Sting, determining that the registrant had a legitimate interest in the domain and had not

acted in bad faith (Sumner v. Urvan). This case highlighted the limits of the UDRP when there is no

clear intent to exploit a famous name commercially.

112

DNS Components
In previous descriptions of how DNS works, the steps in the process for resolving a DNS name to an IP

address was grossly oversimplified. While this simple explanation may be accurate enough when you’re

first learning about the Network Layer, the process is much more involved and it’s important that you

The Domain Name Gold Rush: A Modern Digital Land Grab (Continued)

The domain name gold rush revealed something essential about the early internet: even in a virtual

world, control over naming and identity matters deeply. The period produced both legitimate

business stories and cautionary tales about overreach. Over time, legal frameworks like the ACPA

and UDRP brought order to the chaos, allowing trademark owners to defend their brands and

reclaim their names.

Today, most high-value domains are already owned, and many are protected by robust legal

frameworks. Still, the legacy of those early digital pioneers and opportunists lives on—in the names

we type every day and the court decisions that helped shape modern internet law.

Works Cited

Panavision Int’l, L.P. v. Toeppen, 141 F.3d 1316 (9th Cir. 1998).

Nissan Motor Co. v. Nissan Computer Corp., 378 F.3d 1002 (9th Cir. 2004).

Madonna v. Dan Parisi and 'Madonna.com', WIPO Case No. D2000-0847, 12 Oct. 2000. World

Intellectual Property Organization.

https://www.wipo.int/amc/en/domains/decisions/html/2000/d2000-0847.html

Gordon Sumner p/k/a Sting v. Michael Urvan, WIPO Case No. D2000-0596, 20 July 2000. World

Intellectual Property Organization.

https://www.wipo.int/amc/en/domains/decisions/html/2000/d2000-0596.html

United States Congress. Anticybersquatting Consumer Protection Act. 15 U.S.C. § 1125(d). Enacted

29 Nov. 1999.

Kinsella, Warren. “Domain Name Mania.” Forbes, 3 Aug. 2000,

https://www.forbes.com/2000/08/03/0803domains.html

113

learn the steps in the actual process if you want to be able to configure and troubleshoot DNS

connections. In this section you’ll learn about the DNS process by first learning about the components of

the system, then walking through the steps required to resolve a DNS name to and IP address.

The first thing to learn is that the DNS system is composed of several components including the client, a

resolver, three levels of servers, and an application protocol. The two easiest to understand components

are the client, which is any device that makes a request to resolve a DNS name to an IP address, and the

DNS protocol which is a set of rules that defines the format for the DNS requests and responses15.

The DNS Resolver is the server on the client side, that directly interfaces with the clients. Anytime a

client needs an IP address it asks the DNS Resolver for help. The DNS Resolver then uses the other DNS

servers to track down the information, and once it has IP address, it returns it to the client. You’ll learn

the how a DNS Resolver works with the other servers to find an IP address in bit, but for now the

important point is that the clients only talk to the DNS Resolver, and the DNS Resolver is the device that

does all the work in resolving the DNS name to its corresponding IP address. Another important thing to

note is that the DNS Resolver is the device that Microsoft calls the DNS Server in the IP configuration.

Calling this device a DNS server is a little unfortunate, as in the actual DNS system there are three types

of servers, and the DNS Resolver is not one of these three servers.

On the server side of DNS there are three main components or three types of servers, DNS root servers,

Top Level Domain (TLD) servers, and DNS servers. The reason that there are so many components to

DNS is due to the large number of domain names, and the large volume of requests for name resolution.

As of the end of the fourth quarter of 2024, there were approximately 364.3 million domain name

registrations16 and in late 2022 the DNS system handled an average of over 1 million queries per second

or 60 million per minute.17

While DNS could have used a single database and a single server when it was first implemented, the

designers had the foresight to see that this design wouldn’t be able to scale up and handle a large

15 https://www.catchpoint.com/blog/how-dns-works
16 https://www.dnib.com/articles/the-domain-name-industry-brief-q4-2024
17 https://wgntv.com/business/press-releases/globenewswire/8789925/ns1s-global-dns-traffic-report-reveals-
public-resolvers-dominate-the-internet/

114

number of requests. They foresaw that trying to use a single system with a high volume of requests

could cause the system to get overwhelmed, resulting in significant delays for tasks like web browsing or

sending email. Their solution was to design DNS as a distributed system, giving each organization the

ability to run their own DNS server to hold their DNS names and IP addresses. Or using the phone book

analogy, each organization could create and manage their own section of the DNS phone book. But this

distributed design also means that there will be thousands and thousands of DNS servers, or small

phone books, scattered around all parts of the Internet. Using a distributed system, where the workload

is spread out over thousands of DNS servers makes it possible to avoid the bottleneck and delays that

result from using a single centralized server.

While using a single central server has its problems it also has one good feature. The great thing about

using a system with one centralized server is that it’s easy to tell all the clients the IP address of the

server making configuration easy. The flipside of this is using a distributed system with thousands of

DNS servers makes it much more difficult to tell all the clients which specific server out of the thousands

of DNS servers holds the DNS records they want.

The DNS systems solves this problem by using three “levels” of servers, with the servers at each level

narrowing down the path through all the DNS servers to the server that can resolve the DNS name to its

IP address. The first level of servers are called DNS Root servers and they look at the Top Level Domain

of the requested DNS name, the .com or .gov portion, and based on this return the IP address to the

appropriate server in the next level. For example, if the request is for ebay.com the Root Server will

return the IP address for the server in the next level that handles .com addresses. The servers in this

second level are called Top Level Domain (TLD) servers.

The TLD servers use the next portion of the DNS name to decide which specific DNS server can resolve

the DNS name to its IP address. For example, the .com TLD server will look up ebay.com in its table and

return the IP address of the DNS server that knows how to resolve ebay.com to its IP address.

The DNS Server (with a capital S) is the third level of server in the DNS model, and its like the

organizations portion of the phone book. That is, each DNS Server at this level holds the DNS records like

the all-important A record, which associates the DNS name with its corresponding IP address. This is the

115

DNS Server that we really want to talk to, we just can’t find it without talking to the DNS Root server and

the TLD Server first.

Here's a summary of the steps in the process for a resolving a DNS name to an IP address:

1. A client needs the IP address associated with a DNS name, so it builds a DNS Request formatting

the request with the rules set in the DNS protocol. The client sends the DNS request to the DNS

Resolver for its network.

2. The DNS Resolver sends the request to a DNS Root Server.

3. The DNS Root server looks at the top level domain in the request, and returns the IP address of a

TLD Server for this top level domain.

4. The DNS Resolver sends the request to the TLD Server.

5. The TLD Server looks up second part the domain name in its database and finds the IP address of

the DNS Server that has the information for the DNS name we’re looking for. The TLD Server

returns the IP address of this DNS Server to the DNS Resolver.

6. The DNS Resolver sends the DNS request to the DNS Server.

7. The DNS Server sends the IP address associated with the DNS Name back to the DNS Resolver.

8. The DNS Resolver sends the IP address back to the client.

The Complete DNS Process
In our simple discussions of DNS we made it look like the client communicated directly with a DNS

server, asking the server to resolve a DNS name to an IP address, but this simplified process isn’t correct.

116

To help you understand how all the DNS components work together let’s look at the process that’s

followed to resolve a name to an IP address. During this explanation we’ll use the following diagram

which shows the steps involved in the DNS process.

1. The DNS Client is any device or software that needs to translate a domain name into an IP

address. For example, if you want to view a web page at msdn.microsoft.com the network stack

on your computer will need to know the IP address of msdn.microsoft.com. The first step in this

process consists of the Network Layer on your computer building a DNS Request using the DNS

protocol and placing this DNS Request inside an IP packet. This IP packet will be sent to the DNS

Resolver for your network. Remember that on a Windows computer the DNS Resolver(s) are

referred to as the Primary DNS server and the Secondary DNS server. (To avoid confusion, we’re

going to call it by the correct technical name of DNS Resolver for the rest of this explanation.)

The IP address of the DNS Resolver is one of the items that must be configured on every

computer.

In the diagram this is labelled as Step 1, where the DNS Client sends the DNS Request to the DNS

Resolver.

2. The DNS Resolver is the local part of the DNS system that has the responsibility for returning an

IP address to the client. By local we mean that this computer is typically physically located on or

near the client’s network. The DNS Resolver handles the DNS requests for every device on an

entire network. That is, the clients never ask the larger DNS system to resolve an IP address,

they always ask the DNS Resolver to handle it for them. The DNS Resolver will handle the

request, and once a response is received send the IP address back to the client.

117

When the DNS Resolver receives a new DNS request from a client the first thing it does is check

its cache, which is a list of DNS names and IP addresses it’s previously resolved. The Resolver

builds the cache by storing the DNS names and IP addresses it receives any time it sends a DNS

Request for a client and receives a response. If the DNS Resolver finds a copy in its cache, it

returns the IP address to the client, which would be Step 8 in the diagram. This is done to speed

up the entire process, because as you’ll see, using a cached copy makes it possible to return the

IP address using several fewer steps and sending several fewer network packets.

If the DNS Resolver doesn’t have the requested data in its cache, it builds an IP packet with a

DNS Request and sends it to one of the DNS Root Servers. Each DNS Resolver has a built-in list

of IP addresses for the DNS Root Servers, so it knows the IP address of the DNS Root Server

which it can use as the destination address in the IP packet. The following figure shows a list of

DNS Root Servers.

It may look like there are only 13 Root Servers but there are actually dozens of Root Servers at

each IP address. If there were only 13, they would easily be overwhelmed as they have to

respond to hundreds of thousands of DNS Requests each minute. Each Root Server location has

multiple servers and uses something called Round Robin DNS to balance the load of incoming

requests between the servers. You’ll learn about Round Robin DNS later, when you take a deep

dive into the details of DNS.

List of DNS Root Servers from IANA.org.

118

The important thing to take away is that every DNS Resolver has this list of Root Servers and will

build and send the packet shown as Step 2 in the diagram.

3. At this point the in the request process, the DNS Root Server starts a process to determine

which DNS server will ultimately handle the request. Each DNS Root Server has a list of the IP

addresses for the Top Level Domain (TLD) Servers and will return the IP address of the

appropriate TLD Server to the DNS Resolver. The Root Server determines the appropriate TLD

server by looking at the last portion of any DNS name which will be .com, .blog, etc., or a

country code. In our example, the client is looking for the IP address for msdn.microsoft.com, so

the Root Server will return the IP address for the .com TLD server, which we’ll say is: 192.5.6.30.

This IP address will be sent back to the DNS Resolver in the network packet shown as Step 3 in

the diagram.

4. The DNS Resolver will receive this packet with the IP address for the appropriate TLD Server. In

our example we now know the IP address of the TLD server for any DNS names ending in .com

and the DNS Resolver will build another network packet using the .com TLD’s IP address as the

destination IP. This is Step 4 in the diagram.

5. Each TLD Server has a list of all the next level domains in its domain, along with their IP address.

For example, the .com TLD servers will have lists of every DNS name that ends in .com, while the

.edu TLD servers will have a list of every DNS name that ends in .edu.

In our example we’re looking for msdn.microsoft.com, so the next portion of the DNS name is

microsoft. When our example request gets to the .com TLD Server, the .com TLD server will find

the IP address associated with microsoft. For our example let’s assume that this IP address is:

20.81.111.85. The TLD server will build another response to send back to the DNS Resolver on

our network, telling it that Microsoft’s DNS Server’s IP address is 20.81.111.85. This is shown as

packet 5 in the diagram.

6. The DNS Resolver will receive this packet, and now knows the IP address of the DNS Server that

holds the information it really wants. In the DNS ecosystem these servers are called

119

Authoritative servers because they have the authority to hand out IP addresses for any DNS

names in their zone of authority, as opposed to the Root and TLD servers, which play a different

role in the process. The DNS Resolver will build another network packet to send to this last

authoritative DNS Server. In the case of our example the DNS Resolver will build a network

packet to send to Microsoft’s Authoritative DNS Server’s at IP address 20.81.111.85. This is

shown as step 6 in the diagram.

7. Each authoritative DNS Server has a list of DNS names and their corresponding IP addresses for

the DNS names in its zone of authority. The zone of authority typically corresponds to a DNS

name such microsoft.com. That is, any DNS name such as msdn.microsoft.com or

xbox.microsoft.com would all fall into the microsoft.com zone of authority and be served by

Microsoft’s DNS server, while docs.google.com and sites.google.com will all fall under the

google.com zone of authority and be served by Google’s DNS server. However, sometimes DNS

servers will cover multiple DNS names in their zone of authority. For example, if you register a

DNS name for a web site you use with a web hosting service such as sites.google.com or

GoDaddy, you won’t run your own DNS server. Instead, you’ll use one of Google’s DNS Servers

or GoDaddy’s DNS Servers, and they will cover your respective zone of authority.

In the case of our example, the Microsoft Authoritative DNS Server will look up the IP address

for msdn.microsoft.com and build a network packet to send it back to the DNS Resolver. For

example, let’s say the IP address for msdn.microsoft.com is 13.107.238.70. This will be placed in

a DNS response packet and sent back to the DNS Resolver.

8. The DNS Resolver will receive the DNS response, put the IP address for msdn.microsoft.com in

its cache, then forward the DNS response with msdn.microsoft.com’s IP address back to the

client. In addition to sending the IP address to the client, the DNS Resolver caches the IP

addresses to speed up the process in case another client on its network makes a DNS request for

the same DNS name. The amount of time an IP address remains in cache is set by the

authoritative DNS server using a setting in the DNS response called the Time To Live or TTL.

Typically, the TTL is set to ~3600 seconds, or 1 hour, but this can vary as each DNS administrator

can change it.

120

9. The client will receive the DNS response from the DNS Resolver, and now have the IP address it

needs to build the network packet it was originally working on.

This system of using multiple levels of DNS servers might seem a little complicated, but it was adopted

for several important reasons including scalability, redundancy, localized control and access, and

security.

Scalability - A centralized server model would be impractical for the size and complexity of the DNS

system. With millions of domain names and billions of requests every day, a single server would not be

able to handle the volume of traffic and would quickly become overwhelmed. By using a distributed

system of servers, the load can be spread across multiple servers, making the system more scalable and

resilient.

Redundancy- A distributed system of servers provides redundancy and fault tolerance. If a single server

fails or is taken offline, the other servers in the system can still handle requests and provide the

necessary information, and there are redundant servers at every level of the DNS eco system. This

ensures that the DNS system remains available and functional even in the face of hardware failures or

other disruptions.

Local Control - Because each network controls its own DNS authoritative server, they can change or add

to the DNS names and addresses within their own domains at any time. If a centralized system were

used instead, adding or changing names and IP addresses would require filling out forms and waiting for

someone else to make the changes.

Localized Access – The DNS Resolvers are typically located close to the clients they serve. This means

DNS queries can be resolved more quickly and efficiently, especially if the DNS name and IP address are

already cached, reducing latency, and improving performance.

Security - A distributed system of servers can be more secure than a centralized server model. If a single

server were used for all of DNS, and if it is compromised, it could potentially compromise every system

connected to the Internet. By distributing the data and workload across multiple servers, the impact of a

security breach can be minimized. Of course, the flip side of this is that each DNS Resolver and

121

authoritative server needs to be secured by someone with the experience to ensure the servers are

properly secured.

The last thing to note about DNS is that the system performs amazingly well. Even though resolving a

name to an IP address requires several network transactions, the entire process happens very quickly. In

fact, in most cases the amount of time it takes to resolve a DNS to an IP address is measured in milli

seconds, or thousandths of a second.

DHCP Basics

In this section you’ll learn the details of DHCP including how the client can request, release or renew its

IP information, the protocol used to exchange network configuration information between the client

and server, and how to configure a DHCP server.

History
As networks grew in popularity one of the things that network administrators were looking for was a

way to automatically configure the network settings for a computer or device. While manually

configuring the network settings on a single device isn’t difficult, it can be difficult to manually configure

all the devices on a large network which may have hundreds or even thousands of connected devices. It

can also be difficult to configure devices in dynamic networks, like in a coffee shop or college campus,

where users want to connect wireless devices without the inconvenience of manually setting the IP

address, netmask, default gateway/router IP, etc. And since necessity is the mother of invention, this

lead to the development of the DHCP protocol and service, which allow computers and devices to

connect to a network and automatically receive their network settings. In this section you’ll learn about

the history and background of DHCP.

Dynamic Host Configuration Protocol (DHCP) is a protocol used to dynamically assign IP addresses and

other network configuration parameters, such as subnet masks, default gateways, and DNS servers, to

network devices. That is, DHCP uses the network to assign network settings to computers and other

devices on the network. This may sound a little strange or counter intuitive, as it requires a device that

isn’t configured to use the network is somehow supposed to use the network to get its configuration

information. But as you’ll learn there is a process that allows this to happen. DHCP is an extremely

122

valuable tool as it allows network administrators to manage IP address allocation and network

configuration easily, without having to manually assign IP addresses to each device.

DHCP evolved from a protocol known as the Bootstrap Protocol (BOOTP) which was introduced in the

early 1980s during an effort by several UNIX vendors to provide something called diskless workstations.

As the name implies, diskless workstations were computers that didn’t have a local hard drive, but

instead stored everything on a drive located on the network. The push behind this was that at the time

hard drives were relatively expensive and networks were getting faster (although they were ridiculously

slow by today’s standards). Plus, it would make administration easier as both operating system software

and files, and application programs, could be administered from a central location instead of having to

install and manage the OS and applications on each separate computer. It turned out to be a good idea,

but it was ahead of its time, as at the time networks weren’t fast enough to make it practical. But even

though the diskless workstations weren’t adopted in their entirety, the protocol they used to boot,

bootp, was found to be useful and eventually evolved into the DHCP we know and love today.

In 1993, the Internet Engineering Task Force (IETF) released the first version of DHCP as an extension to

BOOTP, which added features such as automatic IP address allocation, lease management, and support

for multiple vendor-specific options. The current version of DHCP, DHCPv6, was released in 2003 and

provides support for IPv6 networks. The specifications for DHCP are documented in a series of IETF RFCs

(Request for Comments), including RFC 2131 for DHCPv4 and RFC 3315 for DHCPv6. These documents

outline the message formats, options, and procedures used by DHCP clients and servers to communicate

and exchange configuration information.

DHCP has become a widely adopted protocol and is supported by most operating systems and network

devices. DHCP servers are commonly deployed in enterprise networks, Internet service providers, and

home networks to manage IP address allocation. DHCP is built into Windows, Linux, macOS, iPhones,

Android phones, and almost every operating system or device that require network connectivity. It

works so well and so transparently that most people have no idea that their devices are using DHCP.

123

Overview
Before we jump into the details, let’s start with an overview of the DHCP process which will show the

main components and terminology. Remember that DHCP (Dynamic Host Configuration Protocol) is a

network protocol used to automate the process of assigning IP addresses and configuring network

parameters for devices on a network. Its purpose is to simplify the management of IP addresses and

network settings by dynamically allocating and renewing them as needed. DHCP eliminates the manual

configuration of IP addresses, subnet masks, default gateways, DNS server addresses, and other network

parameters on individual devices. By centralizing the IP address management, DHCP enables efficient

utilization of available IP addresses and facilitates easy addition, removal, and movement of devices

within a network.

Here are the main components of DHCP:

1. DHCP Server: A DHCP server is a network device or software application responsible for

assigning IP addresses and other configuration parameters to DHCP clients on a network. It

manages a pool of available IP addresses and leases them to clients upon request.

2. DHCP Client: A DHCP client is a device, such as a computer, smartphone, or network printer,

that requests network configuration information from a DHCP server. It is responsible for

starting the DHCP process when it needs to obtain an IP address, subnet mask, default gateway,

and DNS server addresses.

3. DHCP Relay Agent: A DHCP relay agent is a network device that forwards DHCP messages

between DHCP clients and DHCP servers that are on different subnets or networks. It relays the

DHCP requests and responses to ensure communication between the clients and servers across

network boundaries.

In the DHCP process a client obtains its network configuration information from a DCHP server using the

following handshake process:

124

1. DHCP Discover Message: The DHCP Discover message is a broadcast message sent by a DHCP

client to discover available DHCP servers on the network. It is used to initiate the IP address

assignment process. The Discover message contains information about the client's hardware

address, network segment, and DHCP options it supports. The goal of this message is to find a

DHCP server, so it’s addressed as both an IP broadcast and a MAC broadcast.

2. DHCP Offer Message: When a DHCP server receives a DHCP Discover message, it looks through

its pool of available IP addresses, and if one is available the DHCP server responds with a DHCP

Offer message. The goal of this message is to propose a set of network settings to the client, so

this message includes all the network configuration information including an IP address lease

offer, subnet mask, default gateway, DNS server addresses, and any other configuration options.

The client doesn’t have an IP address yet, so this message is sent as an IP broadcast. But the

DHCP server does know the client’s MAC address, so the ethernet frame is addressed to the

client’s MAC address.

3. DHCP Request Message: After receiving a DHCP Offer message, the DHCP client sends a DHCP

Request message. This message formally confirms the acceptance of the offered IP address and

configuration parameters from the DHCP server. The client now knows the DHCP server’s IP and

Figure XXX - The DHCP handshake.

125

MAC addresses, so the IP packet and ethernet frame can be addressed directly to the DHCP

server.

4. DHCP Acknowledgment Message: Upon receiving the DHCP Request message, the DHCP server

marks the IP address as in use, so it won’t be offered to any other devices. The formal name for

this process is binding because the DHCP server binds the clients MAC address with the leased IP

address. After the binding is complete the DHCP server sends a DHCP Acknowledgment message

to the client. When the client receives this message, it knows the handshake is complete and it

can start to use the IP address.

Lease, Renewal, and Rebinding Times
During the DHCP process there are several values exchanged that deal with lease times, the Lease Time,

Lease Rebinding Time, and Lease Renewal Time. In this section you’ll learn what the meaning of these

values and how they’re used. Let’s start with the Lease Time. When a client leases an IP address from a

DHCP server it doesn’t get to use it forever, as the lease will expire at some point, which is specified by

the Lease Time. This time is tracked by the DHCP server and starts when the server sends the DHCP

Acknowledgement. If the client doesn’t renew the address before the lease runs out, the server removes

the binding from its database and returns the IP address to the pool of available addresses.

If a client wants to continue using a leased IP address, it needs to send a DHCP Renewal message to the

DHCP server before the Lease Time expires. Renewing a lease is a simpler process than creating the

original lease. And renewing a lease is preferable to losing the current IP address, stopping all network

traffic on the client, and obtaining a new IP address. Plus, with a lease renewal the client can keep using

the same IP address, as opposed to possibly getting a completely different IP address, which might

happen if the DHCP lease process is started from the beginning. The amount of time the client waits

before sending the DHCP Renewal message is specified by the Lease Renewal Time. The Lease Renewal

Time should be less than the Lease Time, which will give the client some time to renew before the lease

expires.

The Lease Rebinding Time is used by the client in case the DHCP server doesn’t respond to a renewal

message. For example, if the DHCP server that issued the original lease was replaced or taken offline,

126

the client won’t be able to renew the lease. If the DHCP server doesn’t respond and the Lease Rebinding

Time is reached, the client will broadcast a Lease Rebinding message. This is sent as a broadcast so that

any DHCP server will respond. The Rebinding message also includes the client’s current IP address, in the

hope that a new DHCP server can be found, and that the new DHCP server will be able to issue a new

lease for the same IP address. The Lease Rebinding Time should be greater than the Lease Renewal

Time, but less than the Lease Time.

If you’re a network administrator and need to set the lease times, you need to take a couple of things

into consideration to find the best times for a specific situation. The first is how static or dynamic will

the devices connecting to the network be. That is, will devices be needing addresses for days or weeks

at a time, like in a business office, or will the devices only need an address for an hour or a few hours,

like in a coffee shop or airport, or will be something in between like in your home where some devices

are permanent, but others may come and go. The second factor is how many IP addresses you have to

work with and how many devices will need an address. In most cases you’ll be working with non-

routable IP addresses, so you’ll typically be working with ~250 IP addresses from the 192.168.1.0

network. But, if you become a network admin, you may have situations where you have smaller or

larger pools of addresses to work with.

Here are a couple of scenarios and suggestions for values for the lease times. In the first scenario

assume you’re setting up a wireless network in a location like a coffee shop where the expectation is

that there will be devices connecting and disconnecting from the network frequently, with the average

connection lasting an hour or less. The coffee shop has 15 tables and a few other places to sit and is

licensed for a maximum occupancy of 100 people. In this case shorter times are probably better because

most customers aren’t going to stay for an extended period, and even if they do, they can renew an IP

address with little interruption. You also want to reclaim unused IP addresses frequently, because when

a customer leaves the shop they won’t need the address, and you may need the IP address for the

constant stream of new customers. That is, if you set the lease time to something like 24 hours, your

DHCP server will most likely run out of addresses because it won’t reclaim unused addresses quickly

enough. For this scenario a good lease time would be an hour or 3600 seconds. For the renewal time

and rebinding time, the general rule of thumb is that the renewal time should be 50% of the lease time,

or 30 minutes (1800 seconds) in this case, and the rebinding time should be 87.5% of the lease time or

127

52.5 minutes (3150 seconds). Keep in mind that these percentages are just guidelines and not a strict

rule, but it does give you some place to start when you’re selecting times.

If you’re setting up DHCP on a network in an office, or some location where the connected devices will

remain fixed for weeks and months at a time, you can afford to make the lease time longer. For

example, at the college we have several computer labs where the IP addresses and IP configuration

settings for the computers in the labs are obtained through DHCP. In this case the lease time is set to 8

days or 691,200 seconds. This might seem like a long time, but the computers in these labs are rarely

changed. The renewal times are 7.5 days or 561,600 seconds, and the rebinding time is set to 6 days and

22 hours or 684,000 seconds. The renewal and rebinding times aren’t set to the typical 50% and 82.5%,

but they still leave plenty of time for the devices to renew, or rebind if necessary.

The last scenario to think about is in your home where your home router is most likely acting as your

DHCP server. This situation falls somewhere between the coffee shop and computer lab scenarios. That

it, some of your home devices will be static, while others such as your laptops and phones may be

connected and disconnected frequently. Plus, you may have friends and family members that drop by

and want to connect their devices and need IP addresses on a more dynamic basis. But even if you allow

your friends and family members to connect to your network you most likely won’t be concerned about

running out of addresses like you would be with the coffee shop scenario. Home wireless routers will

come set with a default DHCP lease time, with most being set to either 24 hours or 72 hours (3 days)

depending on the router brand and model.

The amount of control you have over the DHCP lease times also varies by manufacturer and model.

Some won’t have any way to change the default values, some will let you change all three values, and

Router Brand Default DHCP Lease Time

TP-Link 24 hours

Netgear 24 or 72 hours

Linksys 24 hours or 7 days

ASUS 24 hours

D-Link 24 or 72 hours

Table XXX – Typical DHCP Lease times for major home router manufacturers.

128

others will allow you to set the DHCP Lease Time but not the renewal and rebinding times. In the last

case, the renewal and rebinding times will typically be set to the 50% and 82.5% of the lease time.

If you want to check or control the settings on your home router you’ll have to login to the router as the

administrator, and then find the configuration settings. The process for logging in as administrator and

finding the DHCP settings varies by router brand and model, so you’ll have to search the Internet for

instructions for your router. Note that this is just something you can do if you’re curious. I don’t suggest

mucking around with these values, or any of the settings on your home router, unless you’re having

specific issues that you’re trying to correct. Your home router is definitely a case where the saying of “If

it ain’t broke, don’t fix it” applies.

The following figure shows the DHCP configuration settings for a Netgear Nighthawk router. As you can

see, the only configurable setting is for the DHCP Lease Time, and the default value is 24 hours.

You can also use Wireshark to view the DHCP settings by starting Wireshark, setting the filter to only

view DHCP packets, then connecting a new device to your home network. You can then drill down into

the DHCP Offer and DHCP Acknowledge messages to see the lease, renewal, and rebinding values.

DHCP Process with DHCP Relay
The “normal” DHCP process works if the client and server are on the same network segment, but it will

fail if they’re on different segments with a router between them. It will fail because most of the process

relies on ethernet broadcasts, and routers won’t pass ethernet broadcasts from one network segment

to another. If you want to use DHCP in this situation, it can still be done by using something called a

DHCP Relay. The DHCP relay is a device and service that are used to forward DHCP messages between

Figure XXX – DHCP configuration on a Netgear Nighthawk router.

129

clients and servers on different networks, ensuring that the clients can still obtain IP addresses and

configuration information.

The DHCP Relay is typically a router that has NICs connected to two different network segments. One of

the network segments will have DHCP server and the other will not. The DHCP Relay will route the DHCP

Discover message from the network segment without the DHCP server to the network segment where

the DHCP server lives. The DHCP Relay knows to do this routing because it’s been loaded with a program

that’s been configured to pass the DHCP Discover messages between network segments. The DHCP

Relay will also handle the returning the DHCP offer to the DCHP client.

Here’s what the DHCP process looks like when a DHCP Relay is involved. The packets sent in the

handshake are pretty much the same. The big difference is that the DHCP relay sits in the middle of the

handshake, moving the packets back and forth between the two network segments.

1. DHCP Discover: The process starts the same as the DHCP process without a DHCP Relay,

because the client will have no idea if a DHCP Relay is involved or not. This means that the client

will create a DHCP Discover message which will be broadcast on the network segment.

2. DHCP Relay forwards DHCP Discover: The DHCP Relay will see the ethernet broadcast and pass

the DHCP Discover message up the network stack to the DHCP Relay application code. This code

will note the MAC address of the original message, then create another message to send to the

DHCP server. This message will be sent out as another ethernet broadcast on the NIC connected

to the “other” network segment, the network segment with the DHCP server.

3. DHCP Offer: The DHCP server receives the DHCP Discover packet and does its thing, finding an

available IP address and sending the DHCP Offer.

4. DHCP Relay forwards DHCP Offer: The DHCP Relay receives the DHCP Offer. It then looks in its

list to find the MAC address of the device that started the DHCP process, and forwards the DHCP

offer to this device.

130

5. DHCP Request: The client receives the forwarded DHCP Offer and builds a DHCP Request saying

it would like to use the IP address. To the client, it looks like the DHCP Offer came from the

DHCP Relay, so it addresses the DHCP Request to the relay agent.

6. DHCP Relay forwards DHCP Request: The DHCP Relay receives the DHCP Request and forwards

it to the DHCP server.

7. DHCP Acknowledgement: The DHCP Server receives the DHCP Request, performs the binding,

builds the DHCP Acknowledgement, and sends the packet to the DHCP Relay.

8. DHCP Relay forwards DHCP Acknowledgement: The DHCP Relay receives the DHCP

Acknowledgement and forwards it to the client.

9. Client receives DHCP Acknowledgement: The client receives the DHCP Acknowledgement,

begins to use the network, and everyone lives happily ever after.

Labsim Section 4 Notes

To complete the Labsim homework for this section do the following labs:

2.6.13

4.2.9

4.3.7 – Remember that you need to r-click on any device to open up Windows and run any commands.

4.4.5

4.4.6

4.6.4

4.6.6

4.6.7

4.6.8

131

6.2.10 – Do this lab from section 6.2 before doing the other labs. This lab has to do with client

configuration and is relatively easy.

6.2.5 – This lab, and all the remaining labs in section 6.2 require knowledge of setting up a DHCP server.

You’ll need to read and watch the material in 6.2.1 – 6.2.4 to gain this knowledge and complete these

labs. While it’s not crucial that you know how to configure a DHCP server, both the material and the labs

should provide you with greater clarity on what DHCP is and how it works.

6.2.6

6.2.7

6.2.8

6.3.4 – This lab, and the next lab deal with APIPA. I haven’t seen APIPA used at all in the real world, but

it is something you should know about. This lab also has you deal with a DHCP server which is running in

a Virtual Machine. If you haven’t dealt with VMs before this can seem a little strange, but if you follow

the lab instructions you should be able complete the steps. The main thing is to try and not get lost in

the commands, and try to understand what’s going on with DHCP and APIPA.

6.3.5

6.5.11

The following labs have you work on a DNS server, adding records, and troubleshooting records. These

labs can be a little difficult because you need to start a VM, then use Microsoft’s interface to edit the

DNS records. If you start the lab, then end it, and score it, you can see the steps for starting the VM and

accessing the DNS server. The important concepts for you to take away from these labs are what a zone

is, what an A record contains, and what a CNAME record contains.

6.5.12

6.5.13

6.5.14

6.5.15

6.6.5

132

6.6.6 – This lab is done in Linux, but the nslookup

command is the same as it is in Windows. To run the

command(s), start the lab and then click the terminal app.

Extra Credit – The following labs are optional and will be counted as extra credit. You’re not expected to

know how to complete these labs, and Labsim doesn’t even provide much instruction in their videos and

notes. But they provide good practice in the real world problem of figuring out how to configure devices

you haven’t worked with before. And Labsim will almost always tell you the exact steps you need to

perform if you start the lab and then tell Labsim you’re done.

4.2.10 – This lab requires knowing which buttons to push to configure the networking on an iPad. If

you’re like me and don’t know what to do, you can start the lab and try to figure it out. If you can’t find

the way to change the settings, you can end the lab and Labsim will tell you where to go and what

buttons to push. Or, you can always ask Dr. Internet how to configure the network settings on an iPad.

4.2.11 – This lab requires some knowledge of Linux to configure the network settings. If you’re not

already familiar with Linux most of this lab will seem like gibberish as you’ll be typing commands to

change directories and edit a file. If you exit the lab, Labsim will tell you exactly what to type, but at that

point this because more of a typing exercise than a networking exercise.

4.4.6 - This is another Linux Lab. To answer the first question, you won’t run any Linux commands, you’ll

need to click on the Exhibits button at the top right of the Lab Window.

4.5.9 – This uses IPv6, which can be good to know, but is a little more complicated than IPv4. While it’s

good to know about IPv6, the use of non-routable IP addresses has extended the life of IPv4. And, most

of networking is still built around IPv4, so it would be better to learn as much as you can about IPv4 first.

133

Once you have a firm grasp of how IPv4 works you’ll be able to quickly pick up IPv6. I suggest looking at

everything in Labsim Section 4.5 if you want to do and understand this lab.

4.6.5 – More Linux!

6.4.4 -6.4.10 – These labs have to do with setting up a DHCP Relay. While this isn’t hard in concept, to

complete you need to learn the commands and processes to accomplish this. And once again, the steps

are complicated enough that completing them may add confusion and make it more difficult to

understand the concept.

Ways to Check Your Comprehension

The material in this section will be included in Test 2 in Labsim, which isn’t due for a few weeks. If you

want a couple of other ways to check your comprehension before Test 2 you can use the Practice

Questions in Labsim, which you have to complete as part of your homework, or you can use the Practice

Test Questions that I’ve set up for you.

The Practice Test Questions are completely optional, but they will provide several more hands-on labs

and questions that will be similar to those on the actual test. This is a great way to get more hands-on

experience, as well as a good way to check your comprehension and prepare for the real test. The

Practice Test is completely optional, and you can take it as few or as many times as you want. If you do

decide to take the Practice Test you should note that is may have questions over items that were not

assigned in class or questions that have to do with Linux systems.

	4
	Layer 3 Network Layer and the Internet Protocol (IP)
	Objectives
	Resources
	Lecture Notes
	Labsim Section 4 Notes
	Ways to Check Your Comprehension

	Introduction
	History of IP
	IETF – Who’s (not) the Boss

	Overview of the Network Layer Process and Components
	Component Overview
	Process Overview

	IP Address Basics
	IP Address Versions
	Anatomy of an IP Address.
	How to view a device’s IP address

	Sidebar on Counting in Binary
	Sidebar on Counting in Binary (Continued)
	Sidebar on Counting in Binary (Continued)
	Special IP Addresses
	IP Packets
	Subnetting and Netmask Basics - Delivery of IP Packets
	Using the Netmask
	Netmasks, Numbers of Hosts, and Broadcast Domains
	Classless Inter-Domain Routing (CIDR)8F
	Default Gateway (Router) Basics
	Complete Delivery Demonstration
	Viewing and Configuring Network Settings on a Windows Computer
	Manual Configuration
	DHCP
	APIPA
	Manual Configuration and DHCP Configuration in Windows

	Basic Network Troubleshooting
	Network Layer and IP Basics – Summary
	IP Packet Details
	IP Address Details - How are IP Addresses Assigned
	IP Address Details – Address Blocks
	IP Address Details – Private or Non-Routable IP Addresses
	IP Address Details – Advanced Subnetting & Netmasks
	Binary Netmask - Example 1
	Binary Netmask - Example 2
	Binary Netmask - Example 3
	Complex Binary Subnet Masks
	Binary Netmask - Example 4

	DNS Basics
	DNS History
	DNS Names
	How an Organization Gets a DNS Name

	DNS Components
	The Complete DNS Process

	DHCP Basics
	History
	Overview
	Lease, Renewal, and Rebinding Times

	DHCP Process with DHCP Relay

